Ebin Joseph, Manuela Ciocca, Haodong Wu, Serena Marcozzi, Maria Assunta Ucci, Kavya Keremane, Luyao Zheng, Bed Poudel, Congcong Wu, Antonella Camaioni, Kai Wang, Shashank Priya, Thomas M. Brown
{"title":"Photovoltaic bioelectronics merging biology with new generation semiconductors and light in biophotovoltaics photobiomodulation and biosensing","authors":"Ebin Joseph, Manuela Ciocca, Haodong Wu, Serena Marcozzi, Maria Assunta Ucci, Kavya Keremane, Luyao Zheng, Bed Poudel, Congcong Wu, Antonella Camaioni, Kai Wang, Shashank Priya, Thomas M. Brown","doi":"10.1038/s44328-024-00015-w","DOIUrl":null,"url":null,"abstract":"This review covers advancements in biosensing, biophotovoltaics, and photobiomodulation, focusing on the synergistic use of light, biomaterials, cells or tissues, interfaced with photosensitive dye-sensitized, perovskite, and conjugated polymer organic semiconductors or nanoparticles. Integration of semiconductor and biological systems, using non-invasive light-probes or -stimuli for both sensing and controlling biological behavior, has led to groundbreaking applications like artificial retinas. From fusion of photovoltaics and biology, a new research field emerges: photovoltaic bioelectronics.","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":" ","pages":"1-44"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44328-024-00015-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biosensing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44328-024-00015-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This review covers advancements in biosensing, biophotovoltaics, and photobiomodulation, focusing on the synergistic use of light, biomaterials, cells or tissues, interfaced with photosensitive dye-sensitized, perovskite, and conjugated polymer organic semiconductors or nanoparticles. Integration of semiconductor and biological systems, using non-invasive light-probes or -stimuli for both sensing and controlling biological behavior, has led to groundbreaking applications like artificial retinas. From fusion of photovoltaics and biology, a new research field emerges: photovoltaic bioelectronics.