Expanding the Diversity of the Cyanobacterial Dialkylresorcinol Bartoloside Family.

IF 3.3 2区 生物学 Q2 CHEMISTRY, MEDICINAL Journal of Natural Products Pub Date : 2024-11-20 DOI:10.1021/acs.jnatprod.4c00832
João P A Reis, Sara Freitas, Tereza Procházková, Pedro N Leão
{"title":"Expanding the Diversity of the Cyanobacterial Dialkylresorcinol Bartoloside Family.","authors":"João P A Reis, Sara Freitas, Tereza Procházková, Pedro N Leão","doi":"10.1021/acs.jnatprod.4c00832","DOIUrl":null,"url":null,"abstract":"<p><p>The cyanobacterial dialkylresorcinol bartolosides were initially reported to feature glycosylated and halogenated moieties. Later, biosynthetic and <i>in vitro</i> studies showed that the chlorinated alkyl chains are utilized for a nucleophilic substitution with free fatty acid carboxylates from primary metabolism, generating bartoloside esters. Here, we applied a workflow based on PCR screening coupled to LC-HRESIMS and molecular network analysis with the aim of discovering additional bartoloside diversity. We report the annotation of 27 bartoloside and bartoloside ester derivatives, including the characterization of two new bartolosides, underlining the breadth of structures generated by bartoloside biosynthetic pathways. Some of the herein reported bartolosides feature hydroxylation in their side chains, a modification that has not been associated with this metabolite family.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00832","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The cyanobacterial dialkylresorcinol bartolosides were initially reported to feature glycosylated and halogenated moieties. Later, biosynthetic and in vitro studies showed that the chlorinated alkyl chains are utilized for a nucleophilic substitution with free fatty acid carboxylates from primary metabolism, generating bartoloside esters. Here, we applied a workflow based on PCR screening coupled to LC-HRESIMS and molecular network analysis with the aim of discovering additional bartoloside diversity. We report the annotation of 27 bartoloside and bartoloside ester derivatives, including the characterization of two new bartolosides, underlining the breadth of structures generated by bartoloside biosynthetic pathways. Some of the herein reported bartolosides feature hydroxylation in their side chains, a modification that has not been associated with this metabolite family.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩大蓝藻二烷基间苯二酚巴托苷家族的多样性。
最初报道的蓝藻二烷基间苯二酚酒石酸苷具有糖基化和卤化分子。后来,生物合成和体外研究表明,氯化烷基链可与初级代谢产生的游离脂肪酸羧基发生亲核取代反应,生成巴托苷酯。在此,我们采用了基于 PCR 筛选、LC-HRESIMS 和分子网络分析的工作流程,旨在发现更多的巴托苷多样性。我们报告了 27 种酒石酸苷和酒石酸苷酯衍生物的注释,包括两种新酒石酸苷的表征,强调了酒石酸苷生物合成途径产生的结构的广泛性。本文报告的一些巴托苷的侧链具有羟基化特征,这种修饰与该代谢物家族并不相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
5.90%
发文量
294
审稿时长
2.3 months
期刊介绍: The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin. When new compounds are reported, manuscripts describing their biological activity are much preferred. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
期刊最新文献
Expanding the Diversity of the Cyanobacterial Dialkylresorcinol Bartoloside Family. Discovery of Sporachelins by Genome Mining of a Micromonospora Strain. In Vitro Biological Target Screening and Colloidal Aggregation of Minor Cannabinoids. Tyrosinase Inhibitory Properties of Compounds Isolated from Artocarpus integer Roots. Discovery, Biosynthesis, Total Synthesis, and Biological Activities of Solanapyrones: [4 + 2] Cycloaddition-Derived Polyketides of Fungal Origin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1