João P A Reis, Sara Freitas, Tereza Procházková, Pedro N Leão
{"title":"Expanding the Diversity of the Cyanobacterial Dialkylresorcinol Bartoloside Family.","authors":"João P A Reis, Sara Freitas, Tereza Procházková, Pedro N Leão","doi":"10.1021/acs.jnatprod.4c00832","DOIUrl":null,"url":null,"abstract":"<p><p>The cyanobacterial dialkylresorcinol bartolosides were initially reported to feature glycosylated and halogenated moieties. Later, biosynthetic and <i>in vitro</i> studies showed that the chlorinated alkyl chains are utilized for a nucleophilic substitution with free fatty acid carboxylates from primary metabolism, generating bartoloside esters. Here, we applied a workflow based on PCR screening coupled to LC-HRESIMS and molecular network analysis with the aim of discovering additional bartoloside diversity. We report the annotation of 27 bartoloside and bartoloside ester derivatives, including the characterization of two new bartolosides, underlining the breadth of structures generated by bartoloside biosynthetic pathways. Some of the herein reported bartolosides feature hydroxylation in their side chains, a modification that has not been associated with this metabolite family.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00832","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The cyanobacterial dialkylresorcinol bartolosides were initially reported to feature glycosylated and halogenated moieties. Later, biosynthetic and in vitro studies showed that the chlorinated alkyl chains are utilized for a nucleophilic substitution with free fatty acid carboxylates from primary metabolism, generating bartoloside esters. Here, we applied a workflow based on PCR screening coupled to LC-HRESIMS and molecular network analysis with the aim of discovering additional bartoloside diversity. We report the annotation of 27 bartoloside and bartoloside ester derivatives, including the characterization of two new bartolosides, underlining the breadth of structures generated by bartoloside biosynthetic pathways. Some of the herein reported bartolosides feature hydroxylation in their side chains, a modification that has not been associated with this metabolite family.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.