Machine Learning-Based Bioactivity Classification of Natural Products Using LC-MS/MS Metabolomics.

IF 3.3 2区 生物学 Q2 CHEMISTRY, MEDICINAL Journal of Natural Products Pub Date : 2025-02-07 DOI:10.1021/acs.jnatprod.4c01123
Nathaniel J Brittin, Josephine M Anderson, Doug R Braun, Scott R Rajski, Cameron R Currie, Tim S Bugni
{"title":"Machine Learning-Based Bioactivity Classification of Natural Products Using LC-MS/MS Metabolomics.","authors":"Nathaniel J Brittin, Josephine M Anderson, Doug R Braun, Scott R Rajski, Cameron R Currie, Tim S Bugni","doi":"10.1021/acs.jnatprod.4c01123","DOIUrl":null,"url":null,"abstract":"<p><p>The rediscovery of known drug classes represents a major challenge in natural products drug discovery. Compound rediscovery inhibits the ability of researchers to explore novel natural products and wastes significant amounts of time and resources. This study introduces a novel machine learning framework that can effectively characterize the bioactivity of natural products by leveraging liquid chromatography tandem mass spectrometry and untargeted metabolomics analysis. This accelerates natural product drug discovery by addressing the challenge of dereplicating previously discovered bioactive compounds. Utilizing the SIRIUS 5 metabolomics software suite and <i>in-silico</i>-generated fragmentation spectra, we have trained a ML model capable of predicting a compound's drug class. This approach enables the rapid identification of bioactive scaffolds from LC-MS/MS data, even without reference experimental spectra. The model was trained on a diverse set of molecular fingerprints generated by SIRIUS 5 to effectively classify compounds based on their core pharmacophores. Our model robustly classified 21 diverse bioactive drug classes, achieving accuracies greater than 93% on experimental spectra. This study underscores the potential of ML combined with MFPs to dereplicate bioactive natural products based on pharmacophore, streamlining the discovery process and expediting improved methods of isolating novel antibacterial and antifungal agents.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c01123","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rediscovery of known drug classes represents a major challenge in natural products drug discovery. Compound rediscovery inhibits the ability of researchers to explore novel natural products and wastes significant amounts of time and resources. This study introduces a novel machine learning framework that can effectively characterize the bioactivity of natural products by leveraging liquid chromatography tandem mass spectrometry and untargeted metabolomics analysis. This accelerates natural product drug discovery by addressing the challenge of dereplicating previously discovered bioactive compounds. Utilizing the SIRIUS 5 metabolomics software suite and in-silico-generated fragmentation spectra, we have trained a ML model capable of predicting a compound's drug class. This approach enables the rapid identification of bioactive scaffolds from LC-MS/MS data, even without reference experimental spectra. The model was trained on a diverse set of molecular fingerprints generated by SIRIUS 5 to effectively classify compounds based on their core pharmacophores. Our model robustly classified 21 diverse bioactive drug classes, achieving accuracies greater than 93% on experimental spectra. This study underscores the potential of ML combined with MFPs to dereplicate bioactive natural products based on pharmacophore, streamlining the discovery process and expediting improved methods of isolating novel antibacterial and antifungal agents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
5.90%
发文量
294
审稿时长
2.3 months
期刊介绍: The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin. When new compounds are reported, manuscripts describing their biological activity are much preferred. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
期刊最新文献
Correction to "Discovery of Unusual Sesterterpenoids from Colquhounia coccinea var. mollis and Their Metabolic Implications". Cyclodepsipeptides and Fatty Acid Lactones from the Freshwater-Derived Fungus, Talaromyces gwangjuensis, and Their Potential as Autophagy Activators. Anti-Inflammatory Dimeric and Trimeric Flavonoids from the Roots ofPistacia weinmannifolia. Antimycobacterial Activities of the Zanthoxylum leprieurii Metabolite Adubangoamide and Non-Natural Fagaramide Analogues. Ion Mobility-Coupled Mass Spectrometry for Metallophore Detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1