Jianqi Han, Meng Zhang, Yilong Wang, Zhidan Liu, Xiaohui Shi, Yucai He, Jie Zhu, Xia Yi
{"title":"Cold Plasma Treatment Facilitated the Conversion of Lignin-Derived Aldehyde for Pseudomonas putida.","authors":"Jianqi Han, Meng Zhang, Yilong Wang, Zhidan Liu, Xiaohui Shi, Yucai He, Jie Zhu, Xia Yi","doi":"10.1007/s12010-024-05082-3","DOIUrl":null,"url":null,"abstract":"<p><p>Syringaldehyde derived from lignin is one of the essential intermediates for the production of basic chemicals. However, it was poorly understood for the direct microbial conversion of syringaldehyde. Here, this study tried to use cold plasma technique to enhance syringaldehyde conversion for the bacterium Pseudomonas putida. It illustrated that cell growth and syringaldehyde conversion were separately increased by 1.49 times at 3 h and 1.60 times at 6 h for 35 s, 1.16 and 3.44 times for 140 W, and 1.63 and 4.02 times for 105 Pa for P. putida through single factor assays of cold plasma treatment. To be sure, cell growth and syringaldehyde conversion were enhanced by 1.14 and 5.54 times at 3 h under the optimum parameters (35 s, 140 W, and 105 Pa) for P. putida. Furthermore, genome re-sequencing further discovered single-nucleotide polymorphisms of P. putida, such as PP_2589 (A428V), PP_5651 (V82F), and PP_0545 (W335R), and thus indicated that the potential genetic changes derived from cold plasma treatment would be responsible for the acceleration of syringaldehyde conversion. This work would provide a robust strain catalyst and the potential candidate mutation sites for genetic manipulation for microbial bioconversion of the value-added and lignin-based biochemicals.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05082-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Syringaldehyde derived from lignin is one of the essential intermediates for the production of basic chemicals. However, it was poorly understood for the direct microbial conversion of syringaldehyde. Here, this study tried to use cold plasma technique to enhance syringaldehyde conversion for the bacterium Pseudomonas putida. It illustrated that cell growth and syringaldehyde conversion were separately increased by 1.49 times at 3 h and 1.60 times at 6 h for 35 s, 1.16 and 3.44 times for 140 W, and 1.63 and 4.02 times for 105 Pa for P. putida through single factor assays of cold plasma treatment. To be sure, cell growth and syringaldehyde conversion were enhanced by 1.14 and 5.54 times at 3 h under the optimum parameters (35 s, 140 W, and 105 Pa) for P. putida. Furthermore, genome re-sequencing further discovered single-nucleotide polymorphisms of P. putida, such as PP_2589 (A428V), PP_5651 (V82F), and PP_0545 (W335R), and thus indicated that the potential genetic changes derived from cold plasma treatment would be responsible for the acceleration of syringaldehyde conversion. This work would provide a robust strain catalyst and the potential candidate mutation sites for genetic manipulation for microbial bioconversion of the value-added and lignin-based biochemicals.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.