Huizhi Wei, Jinhong Ren, Xiue Feng, Chengxiao Zhao, Yuanlin Zhang, Hongxia Yuan, Fan Yang, Qingshan Li
{"title":"Targeting Hsp90α to inhibit HMGB1-mediated renal inflammation and fibrosis.","authors":"Huizhi Wei, Jinhong Ren, Xiue Feng, Chengxiao Zhao, Yuanlin Zhang, Hongxia Yuan, Fan Yang, Qingshan Li","doi":"10.1111/cpr.13774","DOIUrl":null,"url":null,"abstract":"<p><p>Renal fibrosis, a terminal manifestation of chronic kidney disease, is characterized by uncontrolled inflammatory responses, increased oxidative stress, tubular cell death, and imbalanced deposition of extracellular matrix. 5,2'-Dibromo-2,4',5'-trihydroxydiphenylmethanone (LM49), a polyphenol derivative synthesized by our group with excellent anti-inflammatory pharmacological properties, has been identified as a small-molecule inducer of extracellular matrix degradation. Nonetheless, the protective effects and mechanisms of LM49 on renal fibrosis remain unknown. Here, we report LM49 could effectively alleviate renal fibrosis and improve filtration function. Furthermore, LM49 significantly inhibited macrophage infiltration, pro-inflammatory cytokine production and oxidative stress. Interestingly, in HK-2 cells induced by tumour necrosis factor alpha under oxygen-glucose-serum deprivation conditions, LM49 treatment similarly yielded a reduced inflammatory response, elevated cellular viability and suppressed cell necrosis and epithelial-to-mesenchymal transition. Notably, LM49 prominently suppressed the high-mobility group box 1 (HMGB1) expression, nucleocytoplasmic translocation and activation. Mechanistically, drug affinity responsive target stability and cellular thermal shift assay confirmed that LM49 could interact with the target heat shock protein 90 alpha family class A member 1 (Hsp90α), disrupting the direct binding of Hsp90α to HMGB1 and inhibiting the nuclear export of HMGB1, thereby suppressing the inflammatory response, cell necrosis and fibrogenesis. Furthermore, molecular docking and molecular dynamic simulation revealed that LM49 occupied the N-terminal ATP pocket of Hsp90α. Collectively, our findings show that LM49 treatment can ameliorate renal fibrosis through inhibition of HMGB1-mediated inflammation and necrosis via binding to Hsp90α, providing strong evidence for its anti-inflammatory and anti-fibrotic actions.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13774"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13774","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Renal fibrosis, a terminal manifestation of chronic kidney disease, is characterized by uncontrolled inflammatory responses, increased oxidative stress, tubular cell death, and imbalanced deposition of extracellular matrix. 5,2'-Dibromo-2,4',5'-trihydroxydiphenylmethanone (LM49), a polyphenol derivative synthesized by our group with excellent anti-inflammatory pharmacological properties, has been identified as a small-molecule inducer of extracellular matrix degradation. Nonetheless, the protective effects and mechanisms of LM49 on renal fibrosis remain unknown. Here, we report LM49 could effectively alleviate renal fibrosis and improve filtration function. Furthermore, LM49 significantly inhibited macrophage infiltration, pro-inflammatory cytokine production and oxidative stress. Interestingly, in HK-2 cells induced by tumour necrosis factor alpha under oxygen-glucose-serum deprivation conditions, LM49 treatment similarly yielded a reduced inflammatory response, elevated cellular viability and suppressed cell necrosis and epithelial-to-mesenchymal transition. Notably, LM49 prominently suppressed the high-mobility group box 1 (HMGB1) expression, nucleocytoplasmic translocation and activation. Mechanistically, drug affinity responsive target stability and cellular thermal shift assay confirmed that LM49 could interact with the target heat shock protein 90 alpha family class A member 1 (Hsp90α), disrupting the direct binding of Hsp90α to HMGB1 and inhibiting the nuclear export of HMGB1, thereby suppressing the inflammatory response, cell necrosis and fibrogenesis. Furthermore, molecular docking and molecular dynamic simulation revealed that LM49 occupied the N-terminal ATP pocket of Hsp90α. Collectively, our findings show that LM49 treatment can ameliorate renal fibrosis through inhibition of HMGB1-mediated inflammation and necrosis via binding to Hsp90α, providing strong evidence for its anti-inflammatory and anti-fibrotic actions.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.