Phuong T H Trinh, Doo-Young Kim, Kang-Ho Choi, Jahae Kim
{"title":"Impact of shortening time on diagnosis of <sup>18</sup>F-florbetaben PET.","authors":"Phuong T H Trinh, Doo-Young Kim, Kang-Ho Choi, Jahae Kim","doi":"10.1186/s13550-024-01181-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><sup>18</sup>F-Florbetaben amyloid positron emission tomography (PET) scan is crucial for diagnosing Alzheimer's disease, typically involving a 20 min acquisition. However, maintaining such prolonged scans can be challenging in some cases. This study explores the diagnostic impact and feasibility of reducing scan durations by comparing quantitative measures between shortened and standard scans. Additionally, we identified the optimal Centiloid threshold to distinguish between positive and negative amyloid results.</p><p><strong>Results: </strong>We analyzed 307 PET scans from our memory clinic, each followed up for a minimum of two years. The scans, conducted 90 to 110 min after approximately 300 MBq of <sup>18</sup>F-Florbetaben injection, were categorized into four sets of 5 min durations: 5, 10, 15, and 20 min. Nuclear medicine physicians validated and rated each scan as either amyloid-positive or negative. For quantitative assessments, we employed the standardized uptake value ratio (SUVR) and Centiloid scales, comparing total SUVR and Centiloid values across five subregions (global, frontal, posterior cingulate-precuneus, lateral temporal, and parietal) using Bland-Altman analysis. Receiver operator characteristic (ROC) curves were utilized to develop optimal Centiloid thresholds. Comparing the images at 5, 10, 15, and 20 min images, SUVR and Centiloid values gradually increased with prolonged scan times. The mean SUVR difference between 5 and 20 min was 0.03 for the amyloid-positive and 0.01 for the amyloid-negative groups; Centiloid differences were 4.60 and 2.38, respectively. Additionally, no significant variation was observed in total SUVR and Centiloid values among the durations across all subregions in positive and negative groups (all p > 0.1). ROC analysis indicated that a Centiloid threshold of 21.86 at 5 min provided optimal agreement with visual assessments (AUC = 0.985, sensitivity = 0.950, specificity = 0.972), especially using the global area.</p><p><strong>Conclusions: </strong>This study demonstrated that 5 min image scans with an optimal threshold of CL = 21.86 exhibited minimal bias in SUVR and Centiloid values compared to longer scans (10, 15, and 20 min). Our findings suggest that shorter scan times are a viable and effective option for brain amyloid PET imaging in clinical settings.</p>","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"14 1","pages":"114"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582261/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13550-024-01181-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: 18F-Florbetaben amyloid positron emission tomography (PET) scan is crucial for diagnosing Alzheimer's disease, typically involving a 20 min acquisition. However, maintaining such prolonged scans can be challenging in some cases. This study explores the diagnostic impact and feasibility of reducing scan durations by comparing quantitative measures between shortened and standard scans. Additionally, we identified the optimal Centiloid threshold to distinguish between positive and negative amyloid results.
Results: We analyzed 307 PET scans from our memory clinic, each followed up for a minimum of two years. The scans, conducted 90 to 110 min after approximately 300 MBq of 18F-Florbetaben injection, were categorized into four sets of 5 min durations: 5, 10, 15, and 20 min. Nuclear medicine physicians validated and rated each scan as either amyloid-positive or negative. For quantitative assessments, we employed the standardized uptake value ratio (SUVR) and Centiloid scales, comparing total SUVR and Centiloid values across five subregions (global, frontal, posterior cingulate-precuneus, lateral temporal, and parietal) using Bland-Altman analysis. Receiver operator characteristic (ROC) curves were utilized to develop optimal Centiloid thresholds. Comparing the images at 5, 10, 15, and 20 min images, SUVR and Centiloid values gradually increased with prolonged scan times. The mean SUVR difference between 5 and 20 min was 0.03 for the amyloid-positive and 0.01 for the amyloid-negative groups; Centiloid differences were 4.60 and 2.38, respectively. Additionally, no significant variation was observed in total SUVR and Centiloid values among the durations across all subregions in positive and negative groups (all p > 0.1). ROC analysis indicated that a Centiloid threshold of 21.86 at 5 min provided optimal agreement with visual assessments (AUC = 0.985, sensitivity = 0.950, specificity = 0.972), especially using the global area.
Conclusions: This study demonstrated that 5 min image scans with an optimal threshold of CL = 21.86 exhibited minimal bias in SUVR and Centiloid values compared to longer scans (10, 15, and 20 min). Our findings suggest that shorter scan times are a viable and effective option for brain amyloid PET imaging in clinical settings.
EJNMMI ResearchRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING&nb-
CiteScore
5.90
自引率
3.10%
发文量
72
审稿时长
13 weeks
期刊介绍:
EJNMMI Research publishes new basic, translational and clinical research in the field of nuclear medicine and molecular imaging. Regular features include original research articles, rapid communication of preliminary data on innovative research, interesting case reports, editorials, and letters to the editor. Educational articles on basic sciences, fundamental aspects and controversy related to pre-clinical and clinical research or ethical aspects of research are also welcome. Timely reviews provide updates on current applications, issues in imaging research and translational aspects of nuclear medicine and molecular imaging technologies.
The main emphasis is placed on the development of targeted imaging with radiopharmaceuticals within the broader context of molecular probes to enhance understanding and characterisation of the complex biological processes underlying disease and to develop, test and guide new treatment modalities, including radionuclide therapy.