Stiffness-tunable velvet worm-inspired soft adhesive robot.

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-11-22 Epub Date: 2024-11-20 DOI:10.1126/sciadv.adp8260
Hyeongho Min, Daebeom Bae, Siyeon Jang, Sangmin Lee, Myungjin Park, Cem Balda Dayan, Jiwoong Choi, Keungyonh Bak, Yoosoo Yang, Sungwoo Chun, Metin Sitti
{"title":"Stiffness-tunable velvet worm-inspired soft adhesive robot.","authors":"Hyeongho Min, Daebeom Bae, Siyeon Jang, Sangmin Lee, Myungjin Park, Cem Balda Dayan, Jiwoong Choi, Keungyonh Bak, Yoosoo Yang, Sungwoo Chun, Metin Sitti","doi":"10.1126/sciadv.adp8260","DOIUrl":null,"url":null,"abstract":"<p><p>Considering the characteristics and operating environment of remotely controlled miniature soft robots, achieving delicate adhesion control over various target surfaces is a substantial challenge. In particular, the ability to delicately grasp wrinkled and soft biological and nonbiological surfaces with low preload without causing damage is essential. The proposed adhesive robotic system, inspired by the secretions from a velvet worm, uses a structured magnetorheological material that exhibits precise adhesion control with stability and repeatability by the rapid stiffness change controlled by an external magnetic field. The proposed adhesion protocol involves controlling soft-state adhesion, maintaining a large contact area, and enhancing the elastic modulus, and the mechanical structure enhances the effectiveness of this protocol. Demonstrations of the remote adhesive robot include stable transportation in soft and wet organs, unscrewing a nut from a bolt, and supporting mouse tumor removal surgery. These results indicate the potential applicability of the soft adhesive robot in biomedical engineering, especially for targeting small-scale biological tissues and organisms.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 47","pages":"eadp8260"},"PeriodicalIF":11.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adp8260","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the characteristics and operating environment of remotely controlled miniature soft robots, achieving delicate adhesion control over various target surfaces is a substantial challenge. In particular, the ability to delicately grasp wrinkled and soft biological and nonbiological surfaces with low preload without causing damage is essential. The proposed adhesive robotic system, inspired by the secretions from a velvet worm, uses a structured magnetorheological material that exhibits precise adhesion control with stability and repeatability by the rapid stiffness change controlled by an external magnetic field. The proposed adhesion protocol involves controlling soft-state adhesion, maintaining a large contact area, and enhancing the elastic modulus, and the mechanical structure enhances the effectiveness of this protocol. Demonstrations of the remote adhesive robot include stable transportation in soft and wet organs, unscrewing a nut from a bolt, and supporting mouse tumor removal surgery. These results indicate the potential applicability of the soft adhesive robot in biomedical engineering, especially for targeting small-scale biological tissues and organisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
刚度可调的天鹅绒蠕虫启发式软粘合机器人。
考虑到遥控微型软体机器人的特性和操作环境,实现对各种目标表面的精细粘附控制是一项巨大的挑战。特别是,在不造成损坏的情况下,以较低的预紧力精细地抓取起皱和柔软的生物和非生物表面的能力至关重要。拟议的粘附机器人系统受到绒毛虫分泌物的启发,使用了一种结构化磁流变材料,通过外部磁场控制的快速刚度变化,实现具有稳定性和可重复性的精确粘附控制。所提出的粘附协议包括控制软态粘附、保持较大的接触面积和提高弹性模量,而机械结构则增强了这一协议的有效性。远程粘附机器人的演示包括在柔软和潮湿器官中的稳定运输、从螺栓上拧下螺母以及支持小鼠肿瘤切除手术。这些结果表明了软粘合机器人在生物医学工程中的潜在适用性,特别是在针对小规模生物组织和生物体方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Stiffness-tunable velvet worm-inspired soft adhesive robot. Structure of the human TSC:WIPI3 lysosomal recruitment complex. Synthetic, multi-dynamic hydrogels by uniting stress-stiffening and supramolecular polymers. Topological Fermiology of gate-tunable Rashba electron gases. A MUSE source-blind survey for emission from the circumgalactic medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1