Effects of Essential Oil Blends Supplementation on Growth Performance, Meat Physiochemical Parameters, Intestinal Health and Lipid Metabolism of Weaned Bamei Piglets.
Jian Du, Zhiqi Dai, Cuiguang Li, Chala Adugna, Yufeng Wang, Chunmei Li
{"title":"Effects of Essential Oil Blends Supplementation on Growth Performance, Meat Physiochemical Parameters, Intestinal Health and Lipid Metabolism of Weaned Bamei Piglets.","authors":"Jian Du, Zhiqi Dai, Cuiguang Li, Chala Adugna, Yufeng Wang, Chunmei Li","doi":"10.1111/jpn.14074","DOIUrl":null,"url":null,"abstract":"<p><p>The benefits of plant essential oils (EO) on the health of animals have been frequently reported, but their alteration of lipid metabolism in obese pigs has yet to be explored. This study aimed to assess the impact of EO blends (oregano, cinnamon and lemon oils) on growth performance, meat physicochemical parameters, intestinal health and lipid metabolism in the small intestine of weaned Bamei (a kind of obese-type pig) piglets. One hundred and forty-four male 60-day-old weaned Bamei piglets were randomly assigned to three groups of six replicates each: CON (basal diet), T1 (basal diet + 250 mg/kg EO), and T2 (basal diet + 500 mg/kg EO) over 28 days. The results showed that T1 trended to improve the average daily gain and feed intake to body gain ratio (p < 0.1), reduced water loss (p < 0.05), and increased the redness of meat (p < 0.05) compared to the CON. In addition, a significant change in the proportion of C17:0 and C20:1 was observed in the meat of T1 (p < 0.05). Improved intestinal health was evidenced by the reduced crypt depth, improved villi-to-crypt length ratio, and better superoxide dismutase activity in T1 (p < 0.05). Further study on intestinal lipid metabolism showed that duodenal lipase activity and the mRNA expression levels of lipid transport-related genes in the jejunum (FABPs, APOA1, APOB and ACSL3) were significantly reduced, alongside diminished serum lipid metabolites (Total protein and triglyceride) in the groups fed with EO (p < 0.05). In short, EO supplementation especially at 250 mg/kg improved intestinal health and inhibited lipid metabolism, which had a positive effect on the overall performance of Bamei piglets. This new evidence contributes to understanding the early regulatory role of EO in obese pigs and their potential to alleviate adolescent obesity.</p>","PeriodicalId":14942,"journal":{"name":"Journal of Animal Physiology and Animal Nutrition","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Physiology and Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jpn.14074","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The benefits of plant essential oils (EO) on the health of animals have been frequently reported, but their alteration of lipid metabolism in obese pigs has yet to be explored. This study aimed to assess the impact of EO blends (oregano, cinnamon and lemon oils) on growth performance, meat physicochemical parameters, intestinal health and lipid metabolism in the small intestine of weaned Bamei (a kind of obese-type pig) piglets. One hundred and forty-four male 60-day-old weaned Bamei piglets were randomly assigned to three groups of six replicates each: CON (basal diet), T1 (basal diet + 250 mg/kg EO), and T2 (basal diet + 500 mg/kg EO) over 28 days. The results showed that T1 trended to improve the average daily gain and feed intake to body gain ratio (p < 0.1), reduced water loss (p < 0.05), and increased the redness of meat (p < 0.05) compared to the CON. In addition, a significant change in the proportion of C17:0 and C20:1 was observed in the meat of T1 (p < 0.05). Improved intestinal health was evidenced by the reduced crypt depth, improved villi-to-crypt length ratio, and better superoxide dismutase activity in T1 (p < 0.05). Further study on intestinal lipid metabolism showed that duodenal lipase activity and the mRNA expression levels of lipid transport-related genes in the jejunum (FABPs, APOA1, APOB and ACSL3) were significantly reduced, alongside diminished serum lipid metabolites (Total protein and triglyceride) in the groups fed with EO (p < 0.05). In short, EO supplementation especially at 250 mg/kg improved intestinal health and inhibited lipid metabolism, which had a positive effect on the overall performance of Bamei piglets. This new evidence contributes to understanding the early regulatory role of EO in obese pigs and their potential to alleviate adolescent obesity.
期刊介绍:
As an international forum for hypothesis-driven scientific research, the Journal of Animal Physiology and Animal Nutrition publishes original papers in the fields of animal physiology, biochemistry and physiology of nutrition, animal nutrition, feed technology and preservation (only when related to animal nutrition). Well-conducted scientific work that meets the technical and ethical standards is considered only on the basis of scientific rigor.
Research on farm and companion animals is preferred. Comparative work on exotic species is welcome too. Pharmacological or toxicological experiments with a direct reference to nutrition are also considered. Manuscripts on fish and other aquatic non-mammals with topics on growth or nutrition will not be accepted. Manuscripts may be rejected on the grounds that the subject is too specialized or that the contribution they make to animal physiology and nutrition is insufficient.
In addition, reviews on topics of current interest within the scope of the journal are welcome. Authors are advised to send an outline to the Editorial Office for approval prior to submission.