Cerebral microvascular physiology associated with white matter lesion burden differs by level of vascular risk in typically aging older adults.

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Cerebral Blood Flow and Metabolism Pub Date : 2024-11-20 DOI:10.1177/0271678X241300394
Gabriele M Gassner, Nikou L Damestani, Natalie S Wheeler, Jan A Kufer, Shrikanth M Yadav, Sarah F Mellen, Katherine N Maina, David H Salat, Meher R Juttukonda
{"title":"Cerebral microvascular physiology associated with white matter lesion burden differs by level of vascular risk in typically aging older adults.","authors":"Gabriele M Gassner, Nikou L Damestani, Natalie S Wheeler, Jan A Kufer, Shrikanth M Yadav, Sarah F Mellen, Katherine N Maina, David H Salat, Meher R Juttukonda","doi":"10.1177/0271678X241300394","DOIUrl":null,"url":null,"abstract":"<p><p>White matter lesions (WMLs) are prevalent with aging, and higher WML burden has been observed in older adults with vascular diseases. While the physiology underlying the formation of WMLs is not known, various risk factors are associated with high WML burden. Here, we investigated the relationship between vascular risk factors and microvascular physiology (i.e., oxygen supply and oxygen extraction fraction [OEF]) and their association with WML burden. Forty-one typically aging adults (60-80 years) were classified into high or low vascular risk based on common modifiable vascular risk factors (hypertension, diabetes, hyperlipidemia, and overweight). These groups were subdivided into high or low WML burden. Differences in microvascular physiology (oxygen supply and OEF) were then compared between and within groups. Overall, OEF was significantly higher in the high vascular risk group compared to the low vascular risk group (p < 0.01). In the low vascular risk subgroup, OEF was uniquely lower in the individuals with high WML versus low WML burden (p = 0.02), despite no differences in oxygen supply between these subgroups (p = 0.87). The coupling of impaired OEF with the absence of compensatory physiology, such as elevated oxygen supply, may represent an important mechanism underlying WML burden in individuals with low vascular risk factors.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241300394"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241300394","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

White matter lesions (WMLs) are prevalent with aging, and higher WML burden has been observed in older adults with vascular diseases. While the physiology underlying the formation of WMLs is not known, various risk factors are associated with high WML burden. Here, we investigated the relationship between vascular risk factors and microvascular physiology (i.e., oxygen supply and oxygen extraction fraction [OEF]) and their association with WML burden. Forty-one typically aging adults (60-80 years) were classified into high or low vascular risk based on common modifiable vascular risk factors (hypertension, diabetes, hyperlipidemia, and overweight). These groups were subdivided into high or low WML burden. Differences in microvascular physiology (oxygen supply and OEF) were then compared between and within groups. Overall, OEF was significantly higher in the high vascular risk group compared to the low vascular risk group (p < 0.01). In the low vascular risk subgroup, OEF was uniquely lower in the individuals with high WML versus low WML burden (p = 0.02), despite no differences in oxygen supply between these subgroups (p = 0.87). The coupling of impaired OEF with the absence of compensatory physiology, such as elevated oxygen supply, may represent an important mechanism underlying WML burden in individuals with low vascular risk factors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与白质病变负担相关的脑微血管生理学因典型老龄化老年人的血管风险水平而异。
白质病变(WMLs)随着年龄的增长而普遍存在,在患有血管疾病的老年人中观察到较高的 WML 负担。虽然 WMLs 形成的生理学原理尚不清楚,但各种风险因素都与高 WML 负担有关。在此,我们研究了血管风险因素和微血管生理(即供氧量和氧提取率 [OEF])之间的关系及其与 WML 负荷的关联。根据常见的可改变的血管风险因素(高血压、糖尿病、高脂血症和超重),我们将 41 名典型的老年人(60-80 岁)分为血管风险高和低两组。这些组别又被细分为高或低 WML 负担组。然后比较组间和组内的微血管生理差异(供氧和 OEF)。总体而言,高血管风险组的 OEF 明显高于低血管风险组(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
期刊最新文献
Cerebral microvascular physiology associated with white matter lesion burden differs by level of vascular risk in typically aging older adults. Associations of life-course cardiovascular risk factors with late-life cerebral haemodynamics. Molecular and cellular mechanisms of mitochondria transfer in models of central nervous system disease. Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence. A dangerous liaison: Spreading depolarization and tissue acidification in cerebral ischemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1