Comparative performance analysis of mixed metal oxide sensors for dual-sensing leveraging machine learning.

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-12-27 DOI:10.1088/1361-6528/ad947e
R Binowesley, Kirubaveni Savarimuthu, M Emimal
{"title":"Comparative performance analysis of mixed metal oxide sensors for dual-sensing leveraging machine learning.","authors":"R Binowesley, Kirubaveni Savarimuthu, M Emimal","doi":"10.1088/1361-6528/ad947e","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the synthesis of mixed metal oxide (BaTiO<sub>3</sub>: ZnO) (B: Z) sensors with various molar ratios using a low-temperature hydrothermal method for dual sensing applications (gas and acceleration). The sensor developed with an equal molar ratio of 1B:1Z, showcases superior performance compared to unmixed and alternative mixed metal oxide sensors. This equilibrium in ratios optimally enhances synergistic effects between elements B and Z, resulting in improved sensing properties. Furthermore, it contributes to structural stability, enhancing performance in gas and acceleration sensing. A decreased band gap of 2.82 eV and a rapid turn-on voltage of 0.18 V were achieved. The acceleration performance of 1B:1Z sensor exhibits a maximum voltage of 2.62 V at a 10 Hz resonant frequency and an output voltage of 2.52 V at 1 g acceleration, achieving an improved sensitivity of 3.889 V g<sup>-1</sup>. In addition, the proposed gas shows a notable sensor response of ∼63.45% (CO) and 58.29% (CH<sub>4</sub>) at 10 ppm with a quick response time of 1.19 s (CO) and 8.69 s (CH<sub>4</sub>) and recovery time of 2.09 s (CO) and 8.69 s (CH<sub>4</sub>). Challenges in selectivity are addressed using machine learning, employing various classification algorithms. Linear discriminant analysis achieves superior accuracy in differentiating between CO and CH<sub>4,</sub>reaching 96.6% for CO and 74.6% for CH<sub>4</sub>at 10 ppm. Understanding these concentration-dependent trends can guide the optimal use of the sensors in different current applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad947e","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the synthesis of mixed metal oxide (BaTiO3: ZnO) (B: Z) sensors with various molar ratios using a low-temperature hydrothermal method for dual sensing applications (gas and acceleration). The sensor developed with an equal molar ratio of 1B:1Z, showcases superior performance compared to unmixed and alternative mixed metal oxide sensors. This equilibrium in ratios optimally enhances synergistic effects between elements B and Z, resulting in improved sensing properties. Furthermore, it contributes to structural stability, enhancing performance in gas and acceleration sensing. A decreased band gap of 2.82 eV and a rapid turn-on voltage of 0.18 V were achieved. The acceleration performance of 1B:1Z sensor exhibits a maximum voltage of 2.62 V at a 10 Hz resonant frequency and an output voltage of 2.52 V at 1 g acceleration, achieving an improved sensitivity of 3.889 V g-1. In addition, the proposed gas shows a notable sensor response of ∼63.45% (CO) and 58.29% (CH4) at 10 ppm with a quick response time of 1.19 s (CO) and 8.69 s (CH4) and recovery time of 2.09 s (CO) and 8.69 s (CH4). Challenges in selectivity are addressed using machine learning, employing various classification algorithms. Linear discriminant analysis achieves superior accuracy in differentiating between CO and CH4,reaching 96.6% for CO and 74.6% for CH4at 10 ppm. Understanding these concentration-dependent trends can guide the optimal use of the sensors in different current applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习对用于双传感的未混合和混合金属氧化物传感器进行性能比较分析。
本文介绍了采用低温水热法合成不同摩尔比的混合金属氧化物(BaTiO3:ZnO)(B:Z)传感器,用于双重传感应用(气体和加速度)。与未混合和其他混合金属氧化物传感器相比,采用 1B:1Z 等摩尔比开发的传感器性能更优。这种均衡的比例可优化增强 B 和 Z 元素之间的协同效应,从而提高传感性能。此外,它还有助于提高结构稳定性,增强气体和加速度传感性能。这种传感器的带隙减小到 2.82eV,快速开启电压为 0.18V。1B:1Z 传感器的加速性能在谐振频率为 10 Hz 时的最大电压为 2.62 V,在加速度为 1 g 时的输出电压为 2.52 V,灵敏度提高到 3.889 V/g。此外,在 10 ppm 的浓度下,拟议气体的传感器响应速度为 63.45%(CO)和 58.29%(CH4),响应时间分别为 1.19 秒(CO)和 8.69 秒(CH4),恢复时间分别为 2.09 秒(CO)和 8.69 秒(CH4)。利用机器学习和各种分类算法解决了选择性方面的难题。线性判别分析 (LDA) 在区分一氧化碳和甲烷方面取得了卓越的准确性,在 10 ppm 浓度下,一氧化碳和甲烷的准确率分别达到 96.6% 和 74.6%。了解这些随浓度变化的趋势可以指导当前不同应用中传感器的最佳使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
UHV high temperature surface cleaning and piranha treatment for preserving atomically flat, hydrogen-passivated Si(100) surfaces. Ligand length dependence of critical deviatoric stress required for the formation of ordered nanowire arrays in alkylthiol-capped gold superlattices. Confining Ti2NbC2Tx MXene in carbon nanofibers to boost lithium-ion storage. Topological phase transition and spin-wave signature of meron-like states in nanorings with anisotropic Dzyaloshinskii-Moriya interaction. Ni nanoclusters as oxygen evolution catalysts on porous supports for electro- and photocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1