{"title":"Immune evasion after SARS-CoV-2 Omicron BA.5 and XBB.1.9 endemic observed from Guangdong Province, China from 2022 to 2023.","authors":"Huan Zhang, Baisheng Li, Jiufeng Sun, Lirong Zou, Lina Yi, Huifang Lin, Pingping Zhou, Chumin Liang, Lilian Zeng, Xue Zhuang, Zhe Liu, Jing Lu, Jianfeng He, Runyu Yuan","doi":"10.1186/s12985-024-02573-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>From 2022 to 2023, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by Omicron variants spread rapidly in Guangdong Province, resulting in over 80% of the population being infected.</p><p><strong>Results: </strong>To investigate the levels of neutralizing antibodies (NAbs) in individuals following the rapid pandemic and to evaluate the cross-protection against currently circulating variants of SARS-CoV-2 in China, neutralization assay and magnetic particle chemiluminescence method were used to test the 117 serum samples from individuals who had recovered 4 weeks post-infection. The results indicated that the levels of NAbs against prototype and Omicron variants BA.5 were significantly higher than those against Omicron variants BQ.1, XBB.1.1, XBB.1.9, XBB.1.16 and EG.5, regardless of whether the infection was primary or secondary.</p><p><strong>Conclusions: </strong>The cross-protection provided by NAbs induced by prototype and Omicron BA.5 variants was limited when challenged by BQ.1, XBB.1.1, XBB.1.9, XBB.1.16 and EG.5 variants. This indicates that we should pay more attention to the risk of multiple infection from any novel Omicron variants that may emerge in the near future.</p>","PeriodicalId":23616,"journal":{"name":"Virology Journal","volume":"21 1","pages":"298"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12985-024-02573-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: From 2022 to 2023, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by Omicron variants spread rapidly in Guangdong Province, resulting in over 80% of the population being infected.
Results: To investigate the levels of neutralizing antibodies (NAbs) in individuals following the rapid pandemic and to evaluate the cross-protection against currently circulating variants of SARS-CoV-2 in China, neutralization assay and magnetic particle chemiluminescence method were used to test the 117 serum samples from individuals who had recovered 4 weeks post-infection. The results indicated that the levels of NAbs against prototype and Omicron variants BA.5 were significantly higher than those against Omicron variants BQ.1, XBB.1.1, XBB.1.9, XBB.1.16 and EG.5, regardless of whether the infection was primary or secondary.
Conclusions: The cross-protection provided by NAbs induced by prototype and Omicron BA.5 variants was limited when challenged by BQ.1, XBB.1.1, XBB.1.9, XBB.1.16 and EG.5 variants. This indicates that we should pay more attention to the risk of multiple infection from any novel Omicron variants that may emerge in the near future.
期刊介绍:
Virology Journal is an open access, peer reviewed journal that considers articles on all aspects of virology, including research on the viruses of animals, plants and microbes. The journal welcomes basic research as well as pre-clinical and clinical studies of novel diagnostic tools, vaccines and anti-viral therapies.
The Editorial policy of Virology Journal is to publish all research which is assessed by peer reviewers to be a coherent and sound addition to the scientific literature, and puts less emphasis on interest levels or perceived impact.