RummaGEO: Automatic mining of human and mouse gene sets from GEO.

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-10-11 DOI:10.1016/j.patter.2024.101072
Giacomo B Marino, Daniel J B Clarke, Alexander Lachmann, Eden Z Deng, Avi Ma'ayan
{"title":"RummaGEO: Automatic mining of human and mouse gene sets from GEO.","authors":"Giacomo B Marino, Daniel J B Clarke, Alexander Lachmann, Eden Z Deng, Avi Ma'ayan","doi":"10.1016/j.patter.2024.101072","DOIUrl":null,"url":null,"abstract":"<p><p>The Gene Expression Omnibus (GEO) has millions of samples from thousands of studies. While users of GEO can search the metadata describing studies, there is a need for methods to search GEO at the data level. RummaGEO is a gene expression signature search engine for human and mouse RNA sequencing perturbation studies extracted from GEO. To develop RummaGEO, we automatically identified groups of samples and computed differential expressions to extract gene sets from each study. The contents of RummaGEO are served for gene set, PubMed, and metadata search. Next, we analyzed the contents of RummaGEO to identify patterns and perform global analyses. Overall, RummaGEO provides a resource that is enabling users to identify relevant GEO studies based on their own gene expression results. Users of RummaGEO can incorporate RummaGEO into their analysis workflows for integrative analyses and hypothesis generation.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"5 10","pages":"101072"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573963/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Gene Expression Omnibus (GEO) has millions of samples from thousands of studies. While users of GEO can search the metadata describing studies, there is a need for methods to search GEO at the data level. RummaGEO is a gene expression signature search engine for human and mouse RNA sequencing perturbation studies extracted from GEO. To develop RummaGEO, we automatically identified groups of samples and computed differential expressions to extract gene sets from each study. The contents of RummaGEO are served for gene set, PubMed, and metadata search. Next, we analyzed the contents of RummaGEO to identify patterns and perform global analyses. Overall, RummaGEO provides a resource that is enabling users to identify relevant GEO studies based on their own gene expression results. Users of RummaGEO can incorporate RummaGEO into their analysis workflows for integrative analyses and hypothesis generation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RummaGEO:从 GEO 自动挖掘人类和小鼠基因组。
基因表达总库(GEO)拥有来自数千项研究的数百万个样本。虽然 GEO 的用户可以搜索描述研究的元数据,但仍需要在数据层面搜索 GEO 的方法。RummaGEO 是一个基因表达特征搜索引擎,适用于从 GEO 中提取的人类和小鼠 RNA 测序扰动研究。为了开发 RummaGEO,我们自动识别样本组并计算差异表达,从每项研究中提取基因集。RummaGEO 的内容可用于基因组、PubMed 和元数据搜索。接下来,我们分析了 RummaGEO 的内容,以确定模式并进行全局分析。总的来说,RummaGEO 提供的资源能让用户根据自己的基因表达结果识别相关的 GEO 研究。RummaGEO 的用户可以将 RummaGEO 纳入他们的分析工作流程,进行综合分析和假设生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1