A latent transfer learning method for estimating hospital-specific post-acute healthcare demands following SARS-CoV-2 infection.

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-10-24 eCollection Date: 2024-11-08 DOI:10.1016/j.patter.2024.101079
Qiong Wu, Nathan M Pajor, Yiwen Lu, Charles J Wolock, Jiayi Tong, Vitaly Lorman, Kevin B Johnson, Jason H Moore, Christopher B Forrest, David A Asch, Yong Chen
{"title":"A latent transfer learning method for estimating hospital-specific post-acute healthcare demands following SARS-CoV-2 infection.","authors":"Qiong Wu, Nathan M Pajor, Yiwen Lu, Charles J Wolock, Jiayi Tong, Vitaly Lorman, Kevin B Johnson, Jason H Moore, Christopher B Forrest, David A Asch, Yong Chen","doi":"10.1016/j.patter.2024.101079","DOIUrl":null,"url":null,"abstract":"<p><p>The long-term complications of COVID-19, known as the post-acute sequelae of SARS-CoV-2 infection (PASC), significantly burden healthcare resources. Quantifying the demand for post-acute healthcare is essential for understanding patients' needs and optimizing the allocation of valuable medical resources for disease management. Driven by this need, we developed a heterogeneous latent transfer learning framework (Latent-TL) to generate critical insights for individual health systems in a distributed research network. Latent-TL enhances learning in a specific health system by borrowing information from all other health systems in the network in a data-driven fashion. By identifying subpopulations with varying healthcare needs, our Latent-TL framework can provide more effective guidance for decision-making. Applying Latent-TL to electronic health record (EHR) data from eight health systems in PEDSnet, a national learning health system in the US, revealed four distinct patient subpopulations with heterogeneous post-acute healthcare demands following COVID-19 infections, varying across subpopulations and hospitals.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"5 11","pages":"101079"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The long-term complications of COVID-19, known as the post-acute sequelae of SARS-CoV-2 infection (PASC), significantly burden healthcare resources. Quantifying the demand for post-acute healthcare is essential for understanding patients' needs and optimizing the allocation of valuable medical resources for disease management. Driven by this need, we developed a heterogeneous latent transfer learning framework (Latent-TL) to generate critical insights for individual health systems in a distributed research network. Latent-TL enhances learning in a specific health system by borrowing information from all other health systems in the network in a data-driven fashion. By identifying subpopulations with varying healthcare needs, our Latent-TL framework can provide more effective guidance for decision-making. Applying Latent-TL to electronic health record (EHR) data from eight health systems in PEDSnet, a national learning health system in the US, revealed four distinct patient subpopulations with heterogeneous post-acute healthcare demands following COVID-19 infections, varying across subpopulations and hospitals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于估计感染 SARS-CoV-2 后医院特定的急性期后医疗保健需求的潜移默化学习方法。
COVID-19 的长期并发症,即 SARS-CoV-2 感染后的急性后遗症 (PASC),大大加重了医疗资源的负担。量化急性期后的医疗需求对于了解患者需求和优化疾病管理中宝贵医疗资源的分配至关重要。在这一需求的驱动下,我们开发了一个异构潜移默化学习框架(Latent-TL),为分布式研究网络中的各个医疗系统提供重要见解。Latent-TL 以数据驱动的方式从网络中的所有其他医疗系统借用信息,从而加强特定医疗系统的学习。通过识别具有不同医疗保健需求的子人群,我们的 Latent-TL 框架可以为决策提供更有效的指导。将 Latent-TL 应用于美国国家学习型医疗系统 PEDSnet 中八个医疗系统的电子健康记录(EHR)数据,发现了四个不同的病人亚群,他们在 COVID-19 感染后有着不同的急性期后医疗保健需求,不同亚群和医院的需求也各不相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1