Interbrain neural correlates of self and other integration in joint statistical learning.

IF 3.6 1区 心理学 Q1 EDUCATION & EDUCATIONAL RESEARCH npj Science of Learning Pub Date : 2024-11-20 DOI:10.1038/s41539-024-00280-4
Zheng Zheng, Jun Wang
{"title":"Interbrain neural correlates of self and other integration in joint statistical learning.","authors":"Zheng Zheng, Jun Wang","doi":"10.1038/s41539-024-00280-4","DOIUrl":null,"url":null,"abstract":"<p><p>While statistical learning is often studied individually, its collective representation through self-other integration remains unclear. This study examines dynamic self-other integration and its multi-brain mechanism using simultaneous recordings from dyads. Participants (N = 112) each repeatedly responded to half of a fixed stimulus sequence with either an active partner (joint context) or a passive observer (baseline context). Significant individual statistical learning was evident in the joint context, characterized by decreased reaction time (RT) and intra-brain neural responses, followed by a quadratic trend (i.e., first increasing and then decreasing) upon insertion of an interference sequence. More importantly, Brain-to-Brain Coupling (BtBC) in the theta band also showed learning and modulation-related trends, with its slope negatively and positively correlating with the slopes of RT and intra-brain functional connectivity, respectively. These results highlight the dynamic nature of self-other integration in joint statistical learning, with statistical regularities implicitly and spontaneously modulating this process. Notably, the BtBC serves as a key neural correlate underlying the dynamics of self-other integration.</p>","PeriodicalId":48503,"journal":{"name":"npj Science of Learning","volume":"9 1","pages":"68"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Science of Learning","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1038/s41539-024-00280-4","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

While statistical learning is often studied individually, its collective representation through self-other integration remains unclear. This study examines dynamic self-other integration and its multi-brain mechanism using simultaneous recordings from dyads. Participants (N = 112) each repeatedly responded to half of a fixed stimulus sequence with either an active partner (joint context) or a passive observer (baseline context). Significant individual statistical learning was evident in the joint context, characterized by decreased reaction time (RT) and intra-brain neural responses, followed by a quadratic trend (i.e., first increasing and then decreasing) upon insertion of an interference sequence. More importantly, Brain-to-Brain Coupling (BtBC) in the theta band also showed learning and modulation-related trends, with its slope negatively and positively correlating with the slopes of RT and intra-brain functional connectivity, respectively. These results highlight the dynamic nature of self-other integration in joint statistical learning, with statistical regularities implicitly and spontaneously modulating this process. Notably, the BtBC serves as a key neural correlate underlying the dynamics of self-other integration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联合统计学习中自我与他人整合的脑际神经相关性
虽然统计学习经常被单独研究,但其通过自他融合的集体表征仍不清楚。本研究使用双人同步记录来研究动态自他整合及其多脑机制。参与者(N = 112)各自重复对固定刺激序列的一半做出反应,并与主动伙伴(联合情境)或被动观察者(基线情境)共同做出反应。在联合情境中,个体统计学习效果显著,表现为反应时间(RT)和脑内神经反应的减少,在插入干扰序列后,反应时间和脑内神经反应呈二次曲线趋势(即先增加后减少)。更重要的是,θ波段的脑-脑耦合(BtBC)也表现出与学习和调制相关的趋势,其斜率分别与反应时间和脑内功能连接的斜率呈负相关和正相关。这些结果凸显了联合统计学习中自体与他体整合的动态性质,统计规律性隐含并自发地调节了这一过程。值得注意的是,BtBC是自他整合动态过程中的一个关键神经相关因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
7.10%
发文量
29
期刊最新文献
Spatiotemporal predictions guide attention throughout the adult lifespan. Interbrain neural correlates of self and other integration in joint statistical learning. Feature versus object in interpreting working memory capacity. Mathematics interest, self-efficacy, and anxiety predict STEM career choice in emerging adulthood. Enhancing mathematical learning outcomes through a low-cost single-channel BCI system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1