Alberto Giubilini, Sebastian Porsdam Mann, Cristina Voinea, Brian Earp, Julian Savulescu
{"title":"Know Thyself, Improve Thyself: Personalized LLMs for Self-Knowledge and Moral Enhancement.","authors":"Alberto Giubilini, Sebastian Porsdam Mann, Cristina Voinea, Brian Earp, Julian Savulescu","doi":"10.1007/s11948-024-00518-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we suggest that personalized LLMs trained on information written by or otherwise pertaining to an individual could serve as artificial moral advisors (AMAs) that account for the dynamic nature of personal morality. These LLM-based AMAs would harness users' past and present data to infer and make explicit their sometimes-shifting values and preferences, thereby fostering self-knowledge. Further, these systems may also assist in processes of self-creation, by helping users reflect on the kind of person they want to be and the actions and goals necessary for so becoming. The feasibility of LLMs providing such personalized moral insights remains uncertain pending further technical development. Nevertheless, we argue that this approach addresses limitations in existing AMA proposals reliant on either predetermined values or introspective self-knowledge.</p>","PeriodicalId":49564,"journal":{"name":"Science and Engineering Ethics","volume":"30 6","pages":"54"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering Ethics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1007/s11948-024-00518-9","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we suggest that personalized LLMs trained on information written by or otherwise pertaining to an individual could serve as artificial moral advisors (AMAs) that account for the dynamic nature of personal morality. These LLM-based AMAs would harness users' past and present data to infer and make explicit their sometimes-shifting values and preferences, thereby fostering self-knowledge. Further, these systems may also assist in processes of self-creation, by helping users reflect on the kind of person they want to be and the actions and goals necessary for so becoming. The feasibility of LLMs providing such personalized moral insights remains uncertain pending further technical development. Nevertheless, we argue that this approach addresses limitations in existing AMA proposals reliant on either predetermined values or introspective self-knowledge.
期刊介绍:
Science and Engineering Ethics is an international multidisciplinary journal dedicated to exploring ethical issues associated with science and engineering, covering professional education, research and practice as well as the effects of technological innovations and research findings on society.
While the focus of this journal is on science and engineering, contributions from a broad range of disciplines, including social sciences and humanities, are welcomed. Areas of interest include, but are not limited to, ethics of new and emerging technologies, research ethics, computer ethics, energy ethics, animals and human subjects ethics, ethics education in science and engineering, ethics in design, biomedical ethics, values in technology and innovation.
We welcome contributions that deal with these issues from an international perspective, particularly from countries that are underrepresented in these discussions.