FBXL16: a new regulator of neuroinflammation and cognition in Alzheimer's disease through the ubiquitination-dependent degradation of amyloid precursor protein.
Liqun Qu, Yong Tang, Jianhui Wu, Xiaoyun Yun, Hang Hong Lo, Linlin Song, Xingxia Wang, Huimiao Wang, Ruilong Zhang, Menghan Liu, Cairen Wang, Jerome P L Ng, Xianjun Fu, Io Nam Wong, Vincent Kam Wai Wong, Betty Yuen Kwan Law
{"title":"FBXL16: a new regulator of neuroinflammation and cognition in Alzheimer's disease through the ubiquitination-dependent degradation of amyloid precursor protein.","authors":"Liqun Qu, Yong Tang, Jianhui Wu, Xiaoyun Yun, Hang Hong Lo, Linlin Song, Xingxia Wang, Huimiao Wang, Ruilong Zhang, Menghan Liu, Cairen Wang, Jerome P L Ng, Xianjun Fu, Io Nam Wong, Vincent Kam Wai Wong, Betty Yuen Kwan Law","doi":"10.1186/s40364-024-00691-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Activating the ubiquitin-proteasome system to dismantle disease- related proteins such as tau, β-amyloid, APP, and α-synuclein is an important focus in the research of neurodegenerative proteinopathy. By analyzing the serum RNA extracted from wild-type and Alzheimer's disease (AD) transgenic mice at different ages (4, 8, and 12 months), this study revealed a new protective role of FBXL16 in AD, primarily through facilitating the degradation of disease-related proteins via the ubiquitin proteasome system.</p><p><strong>Methods: </strong>Proteomic analysis were conducted using protein lysates from HEK293 cells overexpressing FBXL16 to identify potential interacting proteins that interact with FBXL16. Subsequent experiments demonstrated that FBXL16 promotes the proteasomal degradation of the APP protein, as evidenced by co-immunoprecipitation with MG132 and cycloheximide (CHX), immunohistochemistry (IHC) and immunocytochemistry (ICC). Memory and cognitive improvements were observed in 3×Tg AD mice through the use of a lentivirus-mediated approach to generate a brain-specific AD mouse model overexpressing FBXL16 via stereotaxic injection. Furthermore, a brain-specific conditional knockout (cko) FBXL16 mouse model was generated and employed to further confirm the functional role of FBXL 16 in AD via various behavioral tests including Morris water maze and Y-maze.</p><p><strong>Results: </strong>The level of FBXL16 in the brains of transgenic APP/PSEN mice with AD decreased with age. Accelerated degradation of APP was observed when FBXL16 was overexpressed in the hippocampi of these AD mice via a lentivirus. This process led to notable improvements in cognitive impairments and reductions in neuroinflammation. Further studies using proteomics and bioinformatics techniques identified transcription factors and binding proteins associated with FBXL16, providing deeper insights into the potential role of FBXL16 in the regulation of AD. Finally, the in vivo effects of FBXL16 deficiency were further substantiated in cko mice, which overexpress Aβ but specifically lack FBXL16 in the brain region.</p><p><strong>Conclusions: </strong>These findings suggest that FBXL16 could be a new regulator of AD. These findings provide a foundation for further research into drug development and potential therapeutic strategies to combat other related neurodegenerative proteinopathies.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"12 1","pages":"144"},"PeriodicalIF":9.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-024-00691-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Activating the ubiquitin-proteasome system to dismantle disease- related proteins such as tau, β-amyloid, APP, and α-synuclein is an important focus in the research of neurodegenerative proteinopathy. By analyzing the serum RNA extracted from wild-type and Alzheimer's disease (AD) transgenic mice at different ages (4, 8, and 12 months), this study revealed a new protective role of FBXL16 in AD, primarily through facilitating the degradation of disease-related proteins via the ubiquitin proteasome system.
Methods: Proteomic analysis were conducted using protein lysates from HEK293 cells overexpressing FBXL16 to identify potential interacting proteins that interact with FBXL16. Subsequent experiments demonstrated that FBXL16 promotes the proteasomal degradation of the APP protein, as evidenced by co-immunoprecipitation with MG132 and cycloheximide (CHX), immunohistochemistry (IHC) and immunocytochemistry (ICC). Memory and cognitive improvements were observed in 3×Tg AD mice through the use of a lentivirus-mediated approach to generate a brain-specific AD mouse model overexpressing FBXL16 via stereotaxic injection. Furthermore, a brain-specific conditional knockout (cko) FBXL16 mouse model was generated and employed to further confirm the functional role of FBXL 16 in AD via various behavioral tests including Morris water maze and Y-maze.
Results: The level of FBXL16 in the brains of transgenic APP/PSEN mice with AD decreased with age. Accelerated degradation of APP was observed when FBXL16 was overexpressed in the hippocampi of these AD mice via a lentivirus. This process led to notable improvements in cognitive impairments and reductions in neuroinflammation. Further studies using proteomics and bioinformatics techniques identified transcription factors and binding proteins associated with FBXL16, providing deeper insights into the potential role of FBXL16 in the regulation of AD. Finally, the in vivo effects of FBXL16 deficiency were further substantiated in cko mice, which overexpress Aβ but specifically lack FBXL16 in the brain region.
Conclusions: These findings suggest that FBXL16 could be a new regulator of AD. These findings provide a foundation for further research into drug development and potential therapeutic strategies to combat other related neurodegenerative proteinopathies.
Biomarker ResearchBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍:
Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.