Less is more: relative rank is more informative than absolute abundance for compositional NGS data.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Briefings in Functional Genomics Pub Date : 2024-11-20 DOI:10.1093/bfgp/elae045
Xubin Zheng, Nana Jin, Qiong Wu, Ning Zhang, Haonan Wu, Yuanhao Wang, Rui Luo, Tao Liu, Wanfu Ding, Qingshan Geng, Lixin Cheng
{"title":"Less is more: relative rank is more informative than absolute abundance for compositional NGS data.","authors":"Xubin Zheng, Nana Jin, Qiong Wu, Ning Zhang, Haonan Wu, Yuanhao Wang, Rui Luo, Tao Liu, Wanfu Ding, Qingshan Geng, Lixin Cheng","doi":"10.1093/bfgp/elae045","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput gene expression data have been extensively generated and utilized in biological mechanism investigations, biomarker detection, disease diagnosis and prognosis. These applications encompass not only bulk transcriptome, but also single cell RNA-seq data. However, extracting reliable biological information from transcriptome data remains challenging due to the constrains of Compositional Data Analysis. Current data preprocessing methods, including dataset normalization and batch effect correction, are insufficient to address these issues and improve data quality for downstream analysis. Alternatively, qualification methods focusing on the relative order of gene expression (ROGER) are more informative than the quantification methods that rely on gene expression abundance. The Pairwise Analysis of Gene expression method is an enhancement of ROGER, designed for data integration in either sample space or feature space. In this review, we summarize the methods applied to transcriptome data analysis and discuss their potentials in predicting clinical outcomes.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae045","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput gene expression data have been extensively generated and utilized in biological mechanism investigations, biomarker detection, disease diagnosis and prognosis. These applications encompass not only bulk transcriptome, but also single cell RNA-seq data. However, extracting reliable biological information from transcriptome data remains challenging due to the constrains of Compositional Data Analysis. Current data preprocessing methods, including dataset normalization and batch effect correction, are insufficient to address these issues and improve data quality for downstream analysis. Alternatively, qualification methods focusing on the relative order of gene expression (ROGER) are more informative than the quantification methods that rely on gene expression abundance. The Pairwise Analysis of Gene expression method is an enhancement of ROGER, designed for data integration in either sample space or feature space. In this review, we summarize the methods applied to transcriptome data analysis and discuss their potentials in predicting clinical outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
少即是多:对于成分 NGS 数据而言,相对等级比绝对丰度更有参考价值。
高通量基因表达数据已广泛产生并用于生物机制研究、生物标记物检测、疾病诊断和预后。这些应用不仅包括大量转录组数据,还包括单细胞 RNA-seq 数据。然而,由于合成数据分析的限制,从转录组数据中提取可靠的生物信息仍然具有挑战性。目前的数据预处理方法,包括数据集归一化和批量效应校正,都不足以解决这些问题并提高下游分析的数据质量。另外,与依赖基因表达丰度的定量方法相比,侧重于基因表达相对顺序(ROGER)的定性方法信息量更大。基因表达成对分析方法是 ROGER 的增强版,旨在对样本空间或特征空间进行数据整合。在这篇综述中,我们总结了应用于转录组数据分析的方法,并讨论了这些方法在预测临床结果方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
期刊最新文献
Sesame Genomic Web Resource (SesameGWR): a well-annotated data resource for transcriptomic signatures of abiotic and biotic stress responses in sesame (Sesamum indicum L.). A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data. AMLdb: a comprehensive multi-omics platform to identify biomarkers and drug targets for acute myeloid leukemia. Advances in integrating single-cell sequencing data to unravel the mechanism of ferroptosis in cancer. Long-read RNA sequencing can probe organelle genome pervasive transcription.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1