Patrycja S. Bednarek , Jan Zawala , Przemyslaw B. Kowalczuk
{"title":"Polymer-based collectors in flotation: A review","authors":"Patrycja S. Bednarek , Jan Zawala , Przemyslaw B. Kowalczuk","doi":"10.1016/j.cis.2024.103351","DOIUrl":null,"url":null,"abstract":"<div><div>Flotation, as a beneficiation process, stands as a foundation in mineral and metal production, handling approximately 70–80 % of the world's exploited ore annually. However, numerous challenges emerge prior to beneficiation, such as the declining quality of ore, necessitating further liberation. This deterioration results in higher energy, water, and reagent consumption. A froth flotation chemicals market analysis reveals an anticipated growth of around 30 % in the next five years, signaling a concerning trend due to the frequent toxicity associated with these chemicals. With increasingly stringent environmental regulations, there is a pressing need to explore more sustainable and non-toxic solutions. Polymers play a significant role in mineral processing as either depressants, flocculants or dispersants. The potential of natural green polymers in these capacities is actively being studied. This review delves into the relatively novel use of polymers as collectors, examining their performance and adsorption mechanisms. Among the papers reviewed, collectors formulations based on either natural or synthetic non-toxic polymers have emerged as environmentally friendly alternatives to traditional collectors. The utilization of polymers opens possibilities for creating nanoparticles, conventional polymers, temperature-responsive polymers and block copolymers with functionalities tailored for specific separation processes. These polymers have shown promising results, achieving recoveries and grades comparable to or better than conventional collectors. Additionally, they could address the challenge of declining ore quality, effectively handling finely ground particles and slimes. Properties such as those in temperature-responsive polymers can be used not only to induce hydrophobicity but also to allow the recycling of the collector for future applications.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"335 ","pages":"Article 103351"},"PeriodicalIF":15.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624002744","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flotation, as a beneficiation process, stands as a foundation in mineral and metal production, handling approximately 70–80 % of the world's exploited ore annually. However, numerous challenges emerge prior to beneficiation, such as the declining quality of ore, necessitating further liberation. This deterioration results in higher energy, water, and reagent consumption. A froth flotation chemicals market analysis reveals an anticipated growth of around 30 % in the next five years, signaling a concerning trend due to the frequent toxicity associated with these chemicals. With increasingly stringent environmental regulations, there is a pressing need to explore more sustainable and non-toxic solutions. Polymers play a significant role in mineral processing as either depressants, flocculants or dispersants. The potential of natural green polymers in these capacities is actively being studied. This review delves into the relatively novel use of polymers as collectors, examining their performance and adsorption mechanisms. Among the papers reviewed, collectors formulations based on either natural or synthetic non-toxic polymers have emerged as environmentally friendly alternatives to traditional collectors. The utilization of polymers opens possibilities for creating nanoparticles, conventional polymers, temperature-responsive polymers and block copolymers with functionalities tailored for specific separation processes. These polymers have shown promising results, achieving recoveries and grades comparable to or better than conventional collectors. Additionally, they could address the challenge of declining ore quality, effectively handling finely ground particles and slimes. Properties such as those in temperature-responsive polymers can be used not only to induce hydrophobicity but also to allow the recycling of the collector for future applications.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.