A Zhang, L Lei, L Cheng, H Yin, C Zhang, J Luo, F Wu, M Hu, R Cheng, T Hu
{"title":"Terahertz Imaging Detects Oral Cariogenic Microbial Domains Characteristics.","authors":"A Zhang, L Lei, L Cheng, H Yin, C Zhang, J Luo, F Wu, M Hu, R Cheng, T Hu","doi":"10.1177/00220345241287733","DOIUrl":null,"url":null,"abstract":"<p><p>Dental caries, associated with plaque biofilm, is highly prevalent and significantly burdens public health. <i>Streptococcus mutans</i> is the main cariogenic bacteria that adheres to the tooth surface and forms an abundant extracellular polysaccharide matrix (EPS) as a cariogenic biofilm scaffold. <i>S. mutans</i> RNase III-encoding gene (<i>rnc</i>) and a putative chromosome segregation protein-encoding gene (<i>smc</i>) are potentially associated with EPS production. In addition, complex interactions between <i>S. mutans</i> and other oral microorganisms synergistically or antagonistically affect the cariogenicity. Commensal streptococci suppress the growth of cariogenic pathogens, whereas <i>Candida albicans</i> mediates the formation of cariogenic biofilm through aggregation and dual-species biofilm formation with <i>S. mutans</i>. However, label-free detection of cariogenic microbial interactions with the EPS matrix is still challenging during laboratory investigations. Herein, we hypothesized that the <i>S. mutans rnc-smc</i> operon affects EPS production and aimed to observe streptococci, <i>S. mutans</i>, and <i>S. mutans-C. albicans</i> using terahertz scanning near-field optical microscopy (THz s-SNOM). The light in the 0.1- to 0.3-THz frequency range interacted with the sample through a nano-probe tip by a point-by-point scanning process. Additional noise reduction of the original image was achieved by a dual kernel Gaussian filter. The monospecies of streptococci, <i>S. mutans smc/rnc</i> mutants, and the dual-species of <i>S. mutans-C. albicans</i> were scanned by THz s-SNOM. This technique provided terahertz near-field scanning images of <i>S. mutans smc/rnc</i> mutants, streptococci, and dual-species of <i>S. mutans-C. albicans</i>. Additional analysis of the original images potentially revealed the structures of the strains, such as cell diameters and cell wall thickness. In conclusion, the results suggested that the <i>S. mutans rnc-smc</i> operon regulates EPS production. Furthermore, this novel label-free detection of a THz near-field scanning technique had the potential to observe the morphologies of bacterial cells and EPS matrix.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"220345241287733"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dental research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00220345241287733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dental caries, associated with plaque biofilm, is highly prevalent and significantly burdens public health. Streptococcus mutans is the main cariogenic bacteria that adheres to the tooth surface and forms an abundant extracellular polysaccharide matrix (EPS) as a cariogenic biofilm scaffold. S. mutans RNase III-encoding gene (rnc) and a putative chromosome segregation protein-encoding gene (smc) are potentially associated with EPS production. In addition, complex interactions between S. mutans and other oral microorganisms synergistically or antagonistically affect the cariogenicity. Commensal streptococci suppress the growth of cariogenic pathogens, whereas Candida albicans mediates the formation of cariogenic biofilm through aggregation and dual-species biofilm formation with S. mutans. However, label-free detection of cariogenic microbial interactions with the EPS matrix is still challenging during laboratory investigations. Herein, we hypothesized that the S. mutans rnc-smc operon affects EPS production and aimed to observe streptococci, S. mutans, and S. mutans-C. albicans using terahertz scanning near-field optical microscopy (THz s-SNOM). The light in the 0.1- to 0.3-THz frequency range interacted with the sample through a nano-probe tip by a point-by-point scanning process. Additional noise reduction of the original image was achieved by a dual kernel Gaussian filter. The monospecies of streptococci, S. mutans smc/rnc mutants, and the dual-species of S. mutans-C. albicans were scanned by THz s-SNOM. This technique provided terahertz near-field scanning images of S. mutans smc/rnc mutants, streptococci, and dual-species of S. mutans-C. albicans. Additional analysis of the original images potentially revealed the structures of the strains, such as cell diameters and cell wall thickness. In conclusion, the results suggested that the S. mutans rnc-smc operon regulates EPS production. Furthermore, this novel label-free detection of a THz near-field scanning technique had the potential to observe the morphologies of bacterial cells and EPS matrix.