Tingting Zeng, Kan Sun, Lifang Mai, Xiaosi Hong, Xiaodan He, Weijie Lin, Sifan Chen, Li Yan
{"title":"Extracellular vesicle-associated miR-ERIA exerts the anti-angiogenic effect of macrophages in diabetic wound healing","authors":"Tingting Zeng, Kan Sun, Lifang Mai, Xiaosi Hong, Xiaodan He, Weijie Lin, Sifan Chen, Li Yan","doi":"10.2337/db24-0701","DOIUrl":null,"url":null,"abstract":"Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing. In this study, we aimed to study the interactions of macrophages with vascular endothelial cells and elucidate the mechanism of diabetic wound angiogenesis suppression. We found that macrophages polarized to the M1 type, inhibited the migration and tube formation of human umbilical vein endothelial cells (HUVECs) by secreting extracellular vesicles after treatment with advanced glycation end products (AGEs-EVs), and contributed to wound angiogenesis and delayed wound healing in vivo. Mechanistically, we identified a novel miRNA enriched in AGEs-EVs, namely miR-ERIA, that suppress the biological function of HUVECs by targeting helicase with zinc finger 2 (HELZ2), and in vivo experiments showed that miR-ERIA suppression could promote wound angiogenesis and thus accelerate wound healing in diabetes. We found that miR-ERIA regulates diabetic wound angiogenesis by targeting HELZ2, suggesting a potential therapeutic target for diabetic foot ulcers.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"29 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0701","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing. In this study, we aimed to study the interactions of macrophages with vascular endothelial cells and elucidate the mechanism of diabetic wound angiogenesis suppression. We found that macrophages polarized to the M1 type, inhibited the migration and tube formation of human umbilical vein endothelial cells (HUVECs) by secreting extracellular vesicles after treatment with advanced glycation end products (AGEs-EVs), and contributed to wound angiogenesis and delayed wound healing in vivo. Mechanistically, we identified a novel miRNA enriched in AGEs-EVs, namely miR-ERIA, that suppress the biological function of HUVECs by targeting helicase with zinc finger 2 (HELZ2), and in vivo experiments showed that miR-ERIA suppression could promote wound angiogenesis and thus accelerate wound healing in diabetes. We found that miR-ERIA regulates diabetic wound angiogenesis by targeting HELZ2, suggesting a potential therapeutic target for diabetic foot ulcers.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.