Ag Nanoparticle Ink for High-Resolution Printed Electrodes and Organic Thin-Film Transistors Using Reverse-Offset Printing

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-11-22 DOI:10.1002/aelm.202400546
Yamato Suzuki, Daisuke Kumaki, Taichi Kikkawa, Toshiki Yoshioka, Shunsuke Horigome, Yasunori Takeda, Tomohito Sekine, Shizuo Tokito
{"title":"Ag Nanoparticle Ink for High-Resolution Printed Electrodes and Organic Thin-Film Transistors Using Reverse-Offset Printing","authors":"Yamato Suzuki, Daisuke Kumaki, Taichi Kikkawa, Toshiki Yoshioka, Shunsuke Horigome, Yasunori Takeda, Tomohito Sekine, Shizuo Tokito","doi":"10.1002/aelm.202400546","DOIUrl":null,"url":null,"abstract":"Reverse-offset printing is capable of ultrafine printing at the submicron scale and may be applied to the fabrication process of electronic devices. In this study, the composition of Ag nanoparticle ink is investigated suitable for reverse-offset printing using Ag nanoparticles synthesized by a thermal decomposition method via oxalate-bridging silver alkylamine complexes. The suitability of Ag nanoparticle ink for the blanket is considered while focusing on the absorption characteristics, wettability, and drying properties. Using the synthesized Ag nanoparticle ink, the reverse-offset printing conditions are optimized, successfully forming submicron-scale ultrafine patterns. The successful fabrication of fully printed organic thin-film transistors (TFTs) is also achieved with a significantly short (1 µm) channel using reverse-offset printing. A maximum mobility of 1.25 cm<sup>2</sup> Vs<sup>−1</sup> at an operating voltage of less than 5 V is achieved in the printed organic TFT with a 5-µm channel.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"5 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400546","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reverse-offset printing is capable of ultrafine printing at the submicron scale and may be applied to the fabrication process of electronic devices. In this study, the composition of Ag nanoparticle ink is investigated suitable for reverse-offset printing using Ag nanoparticles synthesized by a thermal decomposition method via oxalate-bridging silver alkylamine complexes. The suitability of Ag nanoparticle ink for the blanket is considered while focusing on the absorption characteristics, wettability, and drying properties. Using the synthesized Ag nanoparticle ink, the reverse-offset printing conditions are optimized, successfully forming submicron-scale ultrafine patterns. The successful fabrication of fully printed organic thin-film transistors (TFTs) is also achieved with a significantly short (1 µm) channel using reverse-offset printing. A maximum mobility of 1.25 cm2 Vs−1 at an operating voltage of less than 5 V is achieved in the printed organic TFT with a 5-µm channel.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用反向胶印技术将银纳米粒子墨水用于高分辨率印刷电极和有机薄膜晶体管
反向胶印能够实现亚微米级的超精细印刷,可应用于电子器件的制造工艺。本研究利用草酸盐桥接银烷基胺复合物通过热分解法合成的银纳米粒子,研究了适合反向胶印的银纳米粒子油墨的组成。在重点考虑橡皮布的吸收特性、润湿性和干燥特性的同时,还考虑了银纳米粒子油墨对橡皮布的适用性。利用合成的银纳米粒子墨水,优化了反向胶印条件,成功地形成了亚微米级的超精细图案。此外,还利用反向胶印技术成功制造出了完全印刷的有机薄膜晶体管(TFT),其沟道非常短(1 微米)。在工作电压低于 5 V 时,5 微米沟道印刷有机 TFT 的最大迁移率达到 1.25 cm2 Vs-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Photothermal Driven Biomimetic Actuator Based on Asymmetric Microstructure Nb2CTx MXene Film Ag Nanoparticle Ink for High-Resolution Printed Electrodes and Organic Thin-Film Transistors Using Reverse-Offset Printing A Self-Organizing Map Spiking Neural Network Based on Tin Oxide Memristive Synapses and Neurons Self-Powered UV Photodetectors With Ultrahigh Performance Enabled by Graphene Oxide-Modulated CuI Hole Transport Layer Tuning the Organic Electrochemical Transistor (OECT) Threshold Voltage with Monomer Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1