Fabien Kohl, Theresa Vogl, Frank Hampel, Henry Dube
{"title":"Hemiphosphoindigos as a platform for chiroptical or water soluble photoswitching","authors":"Fabien Kohl, Theresa Vogl, Frank Hampel, Henry Dube","doi":"10.1038/s41467-025-56942-3","DOIUrl":null,"url":null,"abstract":"<p>Photoswitches are important molecular tools to precisely control the behavior of matter by using light irradiation. They have found application in virtually all applied chemical fields from chemical biology to material sciences. However, great challenges remain in advanced property design including tailored chiroptical responses or water solubility. Here, hemiphosphoindigo (HPI) photoswitches are presented as capable phosphorus-based photoswitches and a distinct addition to the established indigoid chromophore family. Phosphinate is embedded in the core indigoid chromophore and the resulting optimized photoswitches display high thermal stabilities, excellent fatigue resistance and high isomer enrichment. A series of planar, twisted and heterocyclic HPIs are investigated to probe design strategies for advantageous photophysical properties. The phosphinate provides a platform for easily accessible, water-soluble photoswitches, especially interesting for biological applications. Its chiral nature further allows light-induced modulation of chiroptical properties. HPIs therefore open up a distinct structural space for photoswitch generation and advanced light-responsive applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"31 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56942-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Photoswitches are important molecular tools to precisely control the behavior of matter by using light irradiation. They have found application in virtually all applied chemical fields from chemical biology to material sciences. However, great challenges remain in advanced property design including tailored chiroptical responses or water solubility. Here, hemiphosphoindigo (HPI) photoswitches are presented as capable phosphorus-based photoswitches and a distinct addition to the established indigoid chromophore family. Phosphinate is embedded in the core indigoid chromophore and the resulting optimized photoswitches display high thermal stabilities, excellent fatigue resistance and high isomer enrichment. A series of planar, twisted and heterocyclic HPIs are investigated to probe design strategies for advantageous photophysical properties. The phosphinate provides a platform for easily accessible, water-soluble photoswitches, especially interesting for biological applications. Its chiral nature further allows light-induced modulation of chiroptical properties. HPIs therefore open up a distinct structural space for photoswitch generation and advanced light-responsive applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.