Lateral intercalation-assisted ionic transport towards high-performance organic electrochemical transistor

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-22 DOI:10.1038/s41467-024-54528-z
Chaoyi Yan, Lanyi Xiang, Yu Xiao, Xuefeng Zhang, Ziling Jiang, Boya Zhang, Chenyang Li, Siyu Di, Fengjiao Zhang
{"title":"Lateral intercalation-assisted ionic transport towards high-performance organic electrochemical transistor","authors":"Chaoyi Yan, Lanyi Xiang, Yu Xiao, Xuefeng Zhang, Ziling Jiang, Boya Zhang, Chenyang Li, Siyu Di, Fengjiao Zhang","doi":"10.1038/s41467-024-54528-z","DOIUrl":null,"url":null,"abstract":"<p>Efficiently mixed conduction between ionic and electronic charges stands to revolutionize the studies in organic electrochemical transistors (OECTs). However, inefficient ion transport due to the long-range injection and migration process in the bulk film presents challenges for enhancing the steady and transient performance of OECTs. In this work, we proposed a lateral intercalation-assisted ion transport strategy to assist volumetric ion charging, by introducing a striped microstructure in the conductive channel. By precisely adjusting the ratio of lateral area (<i>RoL</i>), the electrical performance, indicated by the maximum transconductance versus response time (<i>G</i><sub>m,max</sub>/<i>τ</i>), increases progressively by over 600%. We further unveiled the mechanism for the enhanced doping uniformity and increased volume capacitance at the lateral area. Based on the universality investigation, we uncovered the effects of molecular stacking on ionic lateral intercalation transport, contributing to the high-performance OECTs and the bio-applications in the recording of dynamic electrocardiography (ECG) signals with distinct features.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"4 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54528-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Efficiently mixed conduction between ionic and electronic charges stands to revolutionize the studies in organic electrochemical transistors (OECTs). However, inefficient ion transport due to the long-range injection and migration process in the bulk film presents challenges for enhancing the steady and transient performance of OECTs. In this work, we proposed a lateral intercalation-assisted ion transport strategy to assist volumetric ion charging, by introducing a striped microstructure in the conductive channel. By precisely adjusting the ratio of lateral area (RoL), the electrical performance, indicated by the maximum transconductance versus response time (Gm,max/τ), increases progressively by over 600%. We further unveiled the mechanism for the enhanced doping uniformity and increased volume capacitance at the lateral area. Based on the universality investigation, we uncovered the effects of molecular stacking on ionic lateral intercalation transport, contributing to the high-performance OECTs and the bio-applications in the recording of dynamic electrocardiography (ECG) signals with distinct features.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
侧向插层辅助离子传输,实现高性能有机电化学晶体管
离子电荷和电子电荷之间的高效混合传导将彻底改变有机电化学晶体管(OECTs)的研究。然而,由于体膜中的长程注入和迁移过程导致离子传输效率低下,这给提高有机电化学晶体管的稳定和瞬态性能带来了挑战。在这项工作中,我们提出了一种横向插层辅助离子传输策略,通过在导电通道中引入条状微结构来辅助体积离子充电。通过精确调整横向面积比 (RoL),以最大跨导与响应时间(Gm,max/τ)表示的电性能逐步提高了 600% 以上。我们进一步揭示了横向区域掺杂均匀性增强和体积电容增大的机理。在普遍性研究的基础上,我们揭示了分子堆叠对离子横向插层传输的影响,这有助于产生高性能的 OECTs,并在生物应用中记录具有明显特征的动态心电图(ECG)信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet Interstellar formation of lactaldehyde, a key intermediate in the methylglyoxal pathway Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure Structural insight into the distinct regulatory mechanism of the HEPN–MNT toxin-antitoxin system in Legionella pneumophila
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1