How Increasing Amounts of Trimerization Catalyst Impact the Formation, Isocyanurate Content, and Microstructure of Poly(urethane-isocyanurate) Rigid Foams
{"title":"How Increasing Amounts of Trimerization Catalyst Impact the Formation, Isocyanurate Content, and Microstructure of Poly(urethane-isocyanurate) Rigid Foams","authors":"Joël Reignier, Françoise Méchin, Alexandru Sarbu","doi":"10.1021/acs.iecr.4c02965","DOIUrl":null,"url":null,"abstract":"This study investigates the effect of trimerization catalyst (mainly composed of potassium ethyl hexanoate) content (0.5–6 pphp) on the kinetics, chemical properties, and cellular morphology of poly(urethane-isocyanurate) rigid (PIR) foams. Increasing the trimerization catalyst content was found to accelerate the foaming process since all its characteristic times (cream time, gel time and tack-free time) were found to decrease (Δ<i>t</i><sub>gel</sub> ∼ −85%). Increasing the trimerization catalyst content was also found to significantly increase the maximum temperature reached during foaming, from 122 to 162 °C. ATR-FTIR spectroscopy analysis of the foam samples demonstrated that increasing the trimerization catalyst level significantly increased the isocyanurate content of the PIR matrix, which corroborated the reduction of nonreacted isocyanate. Accelerating the chemical reactions was also found to decrease the foam density and the cell height significantly (Δρ<sub>f</sub> ∼ −18% and Δ<i>h</i> ∼ −47%, respectively), thus increasing the cell population density by more than a factor of 15 through the reduction of cell coarsening and Oswald ripening. Open cell content was kept very low with a value under 4% for all catalyst contents.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"2 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c02965","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effect of trimerization catalyst (mainly composed of potassium ethyl hexanoate) content (0.5–6 pphp) on the kinetics, chemical properties, and cellular morphology of poly(urethane-isocyanurate) rigid (PIR) foams. Increasing the trimerization catalyst content was found to accelerate the foaming process since all its characteristic times (cream time, gel time and tack-free time) were found to decrease (Δtgel ∼ −85%). Increasing the trimerization catalyst content was also found to significantly increase the maximum temperature reached during foaming, from 122 to 162 °C. ATR-FTIR spectroscopy analysis of the foam samples demonstrated that increasing the trimerization catalyst level significantly increased the isocyanurate content of the PIR matrix, which corroborated the reduction of nonreacted isocyanate. Accelerating the chemical reactions was also found to decrease the foam density and the cell height significantly (Δρf ∼ −18% and Δh ∼ −47%, respectively), thus increasing the cell population density by more than a factor of 15 through the reduction of cell coarsening and Oswald ripening. Open cell content was kept very low with a value under 4% for all catalyst contents.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.