{"title":"An Interval Integrated Optimization to Air-Cargo Hub Network Design and Airline Fleet Planning","authors":"Yu Wang, Tao Zhu, Kaibo Yuan, Peiwen Zhang, Zhe Liang, Jinfu Zhu","doi":"10.1155/2024/5754231","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The objective of this study is to minimize the overall transportation cost through the joint decision-making for air-cargo hub network design and fleet planning under the uncertain environment. This joint decision-making considers various factors, including hub location, node connectivity, fleet size, and flight frequency. It takes into account several uncertain parameters such as air-cargo demand and transportation cost in a realistic setting. We propose a mixed-integer programming model tailored to the characteristics of such problem, which utilizes interval numbers to address these challenges. This model aims to provide a robust scheme for the joint hub network design and the fleet planning in the uncertain environment. An improved probability-based interval ranking method is proposed to solve the model. This transformation converts the proposed model into an equivalent real-number one, simplifying the solving process. Then a hybrid heuristic algorithm, combining the advantages of Memory-Based Genetic Algorithm (MBGA) and Greedy Heuristic Procedure (GHP), is introduced to enhance the solving speed. Finally, the performance of our proposed model and algorithm is verified using real-world data from the Australian postal dataset. The results show that the proposed model reduces hub construction costs by 1.37% and fleet operational costs by 7.60%, respectively, as opposed to the use of traditional approaches. The computational time of the proposed algorithm is reduced by 28.4% and 36.5%, respectively, when compared to the use of Genetic Algorithm (GA) and Variable Neighborhood Search (VNS) algorithm.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5754231","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5754231","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study is to minimize the overall transportation cost through the joint decision-making for air-cargo hub network design and fleet planning under the uncertain environment. This joint decision-making considers various factors, including hub location, node connectivity, fleet size, and flight frequency. It takes into account several uncertain parameters such as air-cargo demand and transportation cost in a realistic setting. We propose a mixed-integer programming model tailored to the characteristics of such problem, which utilizes interval numbers to address these challenges. This model aims to provide a robust scheme for the joint hub network design and the fleet planning in the uncertain environment. An improved probability-based interval ranking method is proposed to solve the model. This transformation converts the proposed model into an equivalent real-number one, simplifying the solving process. Then a hybrid heuristic algorithm, combining the advantages of Memory-Based Genetic Algorithm (MBGA) and Greedy Heuristic Procedure (GHP), is introduced to enhance the solving speed. Finally, the performance of our proposed model and algorithm is verified using real-world data from the Australian postal dataset. The results show that the proposed model reduces hub construction costs by 1.37% and fleet operational costs by 7.60%, respectively, as opposed to the use of traditional approaches. The computational time of the proposed algorithm is reduced by 28.4% and 36.5%, respectively, when compared to the use of Genetic Algorithm (GA) and Variable Neighborhood Search (VNS) algorithm.
期刊介绍:
The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport.
It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest.
Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.