Engineering Thermoresponsive Enzyme–Polymer Conjugates via Glycan-Selective In Situ Polymerization for Recyclable Homogeneous Biocatalysis

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomacromolecules Pub Date : 2024-12-09 DOI:10.1021/acs.biomac.4c01220
Huiru Wang , Shanyun Ma , Muyan Diao , Li Wenhui , Min Huan , Xiaofang Sun , Yuanzi Wu
{"title":"Engineering Thermoresponsive Enzyme–Polymer Conjugates via Glycan-Selective In Situ Polymerization for Recyclable Homogeneous Biocatalysis","authors":"Huiru Wang ,&nbsp;Shanyun Ma ,&nbsp;Muyan Diao ,&nbsp;Li Wenhui ,&nbsp;Min Huan ,&nbsp;Xiaofang Sun ,&nbsp;Yuanzi Wu","doi":"10.1021/acs.biomac.4c01220","DOIUrl":null,"url":null,"abstract":"<div><div>Enzymes are crucial for various technological applications, but their inherent instability and short lifespan pose challenges. This study presents facile immobilized enzyme technology with the development of thermoresponsive enzyme–polymer conjugates (EPCs), using glucose oxidase (GOx) as a model enzyme, to address these limitations. By conjugating heteropolymers to the glycan moieties of GOx through a precise <em>in situ</em> polymerization process, we could modulate the lower critical solution temperature of the EPCs, enhancing enzyme performance without compromising its active site. The EPCs demonstrate a switchable behavior that facilitates efficient homogeneous catalysis and easy heterogeneous separation, reducing costs and environmental impact in industrial applications. Our strategy presents a versatile platform for creating efficient biocatalysts with tunable properties, marking a step forward in sustainable and cost-effective bioprocessing.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (93KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"25 12","pages":"Pages 7951-7957"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779724006299","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymes are crucial for various technological applications, but their inherent instability and short lifespan pose challenges. This study presents facile immobilized enzyme technology with the development of thermoresponsive enzyme–polymer conjugates (EPCs), using glucose oxidase (GOx) as a model enzyme, to address these limitations. By conjugating heteropolymers to the glycan moieties of GOx through a precise in situ polymerization process, we could modulate the lower critical solution temperature of the EPCs, enhancing enzyme performance without compromising its active site. The EPCs demonstrate a switchable behavior that facilitates efficient homogeneous catalysis and easy heterogeneous separation, reducing costs and environmental impact in industrial applications. Our strategy presents a versatile platform for creating efficient biocatalysts with tunable properties, marking a step forward in sustainable and cost-effective bioprocessing.
  1. Download: Download high-res image (93KB)
  2. Download: Download full-size image
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过聚糖选择性原位聚合作用设计热致伸缩性酶-聚合物共轭物,用于可回收的均相生物催化。
酶对各种技术应用至关重要,但其固有的不稳定性和短暂的生命周期带来了挑战。本研究以葡萄糖氧化酶(GOx)为模型酶,通过开发热致伸缩性酶-聚合物共轭物(EPCs),提出了简便的固定化酶技术,以解决这些局限性。通过精确的原位聚合过程将杂多聚合物与 GOx 的糖分子共轭,我们可以调节 EPCs 较低的临界溶液温度,在不影响其活性位点的情况下提高酶的性能。EPCs 具有可切换的特性,可促进高效的均相催化和简易的异相分离,从而降低工业应用中的成本和对环境的影响。我们的策略为创造具有可调特性的高效生物催化剂提供了一个多功能平台,标志着在可持续和具有成本效益的生物加工领域又向前迈进了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
期刊最新文献
Dynamic, Tunable, Biocompatible: Functional Polymers Advancing Biomedical Innovation A Versatile Multidrug Coloaded Nanoplatform Integrating Photothermal-Differentiation-Chemotherapy for Breast Cancer Stemness Inhibition. Soybean Protein Amyloid Fibrils as Natural Cryoprotectants: Structural Characterization and Water Interaction Mechanisms. Tunable Linkers for Dynamic Thiol-Based Bioconjugation Strategies. Intracellular Postpolymerization Modification via Bioorthogonal Click Chemistry Monitored by Förster Resonance Energy Transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1