Emilia Christofi, Mark O'Hanlon, Robin Curtis, Arghya Barman, Jeff Keen, Tibor Nagy, Perdita Barran
{"title":"Hybrid Mass Spectrometry Applied across the Production of Antibody Biotherapeutics.","authors":"Emilia Christofi, Mark O'Hanlon, Robin Curtis, Arghya Barman, Jeff Keen, Tibor Nagy, Perdita Barran","doi":"10.1021/jasms.4c00253","DOIUrl":null,"url":null,"abstract":"<p><p>Post expression from the host cells, biotherapeutics undergo downstream processing steps before final formulation. Mass spectrometry and biophysical characterization methods are valuable for examining conformational and stoichiometric changes at these stages, although typically not used in biomanufacturing, where stability is assessed via bulk property studies. Here we apply hybrid MS methods to understand how solution condition changes impact the structural integrity of a biopharmaceutical across the processing pipeline. As an exemplar product, we use the model IgG1 antibody, mAb4. Flexibility, stability, aggregation propensity, and bulk properties are evaluated in relation to perfusion media, purification stages, and formulation solutions. Comparisons with Herceptin, an extensively studied IgG1 antibody, were conducted in a mass spectrometry-compatible solution. Despite presenting similar charge state distributions (CSD) in native MS, mAb4, and Herceptin show distinct unfolding patterns in activated ion mobility mass spectrometry (aIM-MS) and differential scanning fluorimetry (DSF). Herceptin's greater structural stability and aggregation onset temperature (<i>T</i><sub>agg</sub>) are attributed to heavier glycosylation and kappa-class light chains, unlike the lambda-class light chains in mAb4. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) revealed that mAb4 undergoes substantial structural changes during purification, marked by high flexibility, low melting temperature (Tm), and prevalent repulsive protein-protein interactions but transitions to a compact and stable structure in high-salt and formulated environments. Notably, in formulation, the third constant domain (CH3) of the heavy chain retains flexibility and is a region of interest for aggregation. Future work could translate features of interest from comprehensive studies like this to targeted approaches that could be utilized early in the development stage to aid in decision-making regarding targeted mutations or to guide the design space of bioprocesses and formulation choices.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00253","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Post expression from the host cells, biotherapeutics undergo downstream processing steps before final formulation. Mass spectrometry and biophysical characterization methods are valuable for examining conformational and stoichiometric changes at these stages, although typically not used in biomanufacturing, where stability is assessed via bulk property studies. Here we apply hybrid MS methods to understand how solution condition changes impact the structural integrity of a biopharmaceutical across the processing pipeline. As an exemplar product, we use the model IgG1 antibody, mAb4. Flexibility, stability, aggregation propensity, and bulk properties are evaluated in relation to perfusion media, purification stages, and formulation solutions. Comparisons with Herceptin, an extensively studied IgG1 antibody, were conducted in a mass spectrometry-compatible solution. Despite presenting similar charge state distributions (CSD) in native MS, mAb4, and Herceptin show distinct unfolding patterns in activated ion mobility mass spectrometry (aIM-MS) and differential scanning fluorimetry (DSF). Herceptin's greater structural stability and aggregation onset temperature (Tagg) are attributed to heavier glycosylation and kappa-class light chains, unlike the lambda-class light chains in mAb4. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) revealed that mAb4 undergoes substantial structural changes during purification, marked by high flexibility, low melting temperature (Tm), and prevalent repulsive protein-protein interactions but transitions to a compact and stable structure in high-salt and formulated environments. Notably, in formulation, the third constant domain (CH3) of the heavy chain retains flexibility and is a region of interest for aggregation. Future work could translate features of interest from comprehensive studies like this to targeted approaches that could be utilized early in the development stage to aid in decision-making regarding targeted mutations or to guide the design space of bioprocesses and formulation choices.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives