{"title":"X-206 exhibits broad-spectrum anti-β-coronavirus activity, covering SARS-CoV-2 variants and drug-resistant isolates.","authors":"Jiei Sasaki, Akihiko Sato, Michihito Sasaki, Iori Okabe, Kota Kodama, Satoko Otsuguro, Kosuke Yasuda, Hirotatsu Kojima, Yasuko Orba, Hirofumi Sawa, Katsumi Maenaka, Yusuke Yanagi, Takao Hashiguchi","doi":"10.1016/j.antiviral.2024.106039","DOIUrl":null,"url":null,"abstract":"<p><p>Coronaviruses such as the Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, causing MERS, SARS, and Coronavirus disease-19, respectively, are highly pathogenic to humans. Notably, several antiviral drugs against SARS-CoV-2, such as nirmatrelvir and remdesivir, have been approved. However, no approved vaccines or antiviral agents are available for other highly pathogenic β-coronaviruses. In this study, we identified two compounds, thapsigargin and X-206, that exhibit antiviral activities against SARS-CoV, MERS-CoV, and SARS-CoV-2. Notably, both compounds effectively inhibited the cell-to-cell fusion mediated by the Spike proteins of all three β-coronaviruses. X-206 exhibited antiviral activity against nirmatrelvir- and remdesivir-resistant SARS-CoV-2 isolates and SARS-CoV-2 variants, including Delta, BA.5, and XBB.1. Consequently, the mechanism of action of these compounds with anti-β-coronavirus activities may differ from that of the approved direct-acting drugs for SARS-CoV-2, thereby offering potential use as a cocktail with other antivirals, and serving as a chemical basis for developing therapeutic agents against β-coronaviruses in preparation for the next spillover and pandemic.</p>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":" ","pages":"106039"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.antiviral.2024.106039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Coronaviruses such as the Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, causing MERS, SARS, and Coronavirus disease-19, respectively, are highly pathogenic to humans. Notably, several antiviral drugs against SARS-CoV-2, such as nirmatrelvir and remdesivir, have been approved. However, no approved vaccines or antiviral agents are available for other highly pathogenic β-coronaviruses. In this study, we identified two compounds, thapsigargin and X-206, that exhibit antiviral activities against SARS-CoV, MERS-CoV, and SARS-CoV-2. Notably, both compounds effectively inhibited the cell-to-cell fusion mediated by the Spike proteins of all three β-coronaviruses. X-206 exhibited antiviral activity against nirmatrelvir- and remdesivir-resistant SARS-CoV-2 isolates and SARS-CoV-2 variants, including Delta, BA.5, and XBB.1. Consequently, the mechanism of action of these compounds with anti-β-coronavirus activities may differ from that of the approved direct-acting drugs for SARS-CoV-2, thereby offering potential use as a cocktail with other antivirals, and serving as a chemical basis for developing therapeutic agents against β-coronaviruses in preparation for the next spillover and pandemic.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.