AutoXAI4Omics: an automated explainable AI tool for omics and tabular data.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Briefings in bioinformatics Pub Date : 2024-11-22 DOI:10.1093/bib/bbae593
James Strudwick, Laura-Jayne Gardiner, Kate Denning-James, Niina Haiminen, Ashley Evans, Jennifer Kelly, Matthew Madgwick, Filippo Utro, Ed Seabolt, Christopher Gibson, Bharat Bedi, Daniel Clayton, Ciaron Howell, Laxmi Parida, Anna Paola Carrieri
{"title":"AutoXAI4Omics: an automated explainable AI tool for omics and tabular data.","authors":"James Strudwick, Laura-Jayne Gardiner, Kate Denning-James, Niina Haiminen, Ashley Evans, Jennifer Kelly, Matthew Madgwick, Filippo Utro, Ed Seabolt, Christopher Gibson, Bharat Bedi, Daniel Clayton, Ciaron Howell, Laxmi Parida, Anna Paola Carrieri","doi":"10.1093/bib/bbae593","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) methods offer opportunities for gaining insights into the intricate workings of complex biological systems, and their applications are increasingly prominent in the analysis of omics data to facilitate tasks, such as the identification of novel biomarkers and predictive modeling of phenotypes. For scientists and domain experts, leveraging user-friendly ML pipelines can be incredibly valuable, enabling them to run sophisticated, robust, and interpretable models without requiring in-depth expertise in coding or algorithmic optimization. By streamlining the process of model development and training, researchers can devote their time and energies to the critical tasks of biological interpretation and validation, thereby maximizing the scientific impact of ML-driven insights. Here, we present an entirely automated open-source explainable AI tool, AutoXAI4Omics, that performs classification and regression tasks from omics and tabular numerical data. AutoXAI4Omics accelerates scientific discovery by automating processes and decisions made by AI experts, e.g. selection of the best feature set, hyper-tuning of different ML algorithms and selection of the best ML model for a specific task and dataset. Prior to ML analysis AutoXAI4Omics incorporates feature filtering options that are tailored to specific omic data types. Moreover, the insights into the predictions that are provided by the tool through explainability analysis highlight associations between omic feature values and the targets under investigation, e.g. predicted phenotypes, facilitating the identification of novel actionable insights. AutoXAI4Omics is available at: https://github.com/IBM/AutoXAI4Omics.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae593","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) methods offer opportunities for gaining insights into the intricate workings of complex biological systems, and their applications are increasingly prominent in the analysis of omics data to facilitate tasks, such as the identification of novel biomarkers and predictive modeling of phenotypes. For scientists and domain experts, leveraging user-friendly ML pipelines can be incredibly valuable, enabling them to run sophisticated, robust, and interpretable models without requiring in-depth expertise in coding or algorithmic optimization. By streamlining the process of model development and training, researchers can devote their time and energies to the critical tasks of biological interpretation and validation, thereby maximizing the scientific impact of ML-driven insights. Here, we present an entirely automated open-source explainable AI tool, AutoXAI4Omics, that performs classification and regression tasks from omics and tabular numerical data. AutoXAI4Omics accelerates scientific discovery by automating processes and decisions made by AI experts, e.g. selection of the best feature set, hyper-tuning of different ML algorithms and selection of the best ML model for a specific task and dataset. Prior to ML analysis AutoXAI4Omics incorporates feature filtering options that are tailored to specific omic data types. Moreover, the insights into the predictions that are provided by the tool through explainability analysis highlight associations between omic feature values and the targets under investigation, e.g. predicted phenotypes, facilitating the identification of novel actionable insights. AutoXAI4Omics is available at: https://github.com/IBM/AutoXAI4Omics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoXAI4Omics:一种用于 omics 和表格数据的自动可解释人工智能工具。
机器学习(ML)方法为深入了解复杂生物系统的错综复杂的运作提供了机会,其应用在omics 数据分析中的地位日益突出,为新型生物标记物的鉴定和表型预测建模等任务提供了便利。对于科学家和领域专家来说,利用用户友好型 ML 管道具有难以置信的价值,使他们能够运行复杂、强大和可解释的模型,而不需要深入的编码或算法优化专业知识。通过简化模型开发和训练过程,研究人员可以将时间和精力投入到生物学解释和验证的关键任务中,从而最大限度地发挥 ML 驱动的见解的科学影响力。在这里,我们介绍一种完全自动化的开源可解释人工智能工具 AutoXAI4Omics,它可以从 omics 和表格数字数据中执行分类和回归任务。AutoXAI4Omics 可自动执行人工智能专家的流程和决策,例如选择最佳特征集、超调不同的 ML 算法以及为特定任务和数据集选择最佳 ML 模型,从而加速科学发现。在进行 ML 分析之前,AutoXAI4Omics 结合了针对特定 omic 数据类型量身定制的特征过滤选项。此外,该工具通过可解释性分析提供的预测见解突出了 omic 特征值与调查目标(如预测的表型)之间的关联,有助于识别新的可操作见解。AutoXAI4Omics的网址是:https://github.com/IBM/AutoXAI4Omics。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
期刊最新文献
TRIAGE: an R package for regulatory gene analysis. AutoXAI4Omics: an automated explainable AI tool for omics and tabular data. MCGAE: unraveling tumor invasion through integrated multimodal spatial transcriptomics. tcrBLOSUM: an amino acid substitution matrix for sensitive alignment of distant epitope-specific TCRs. A versatile pipeline to identify convergently lost ancestral conserved fragments associated with convergent evolution of vocal learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1