Comparison Between Conventional and Artificial Intelligence-Assisted Setup for Digital Implant Planning: Accuracy, Time-Efficiency, and User Experience.
Panagiotis Ntovas, Marchand Laurent, Albrect Schnappauf, Finkelman Matthew, Marta Revilla-Leon, Wael Att
{"title":"Comparison Between Conventional and Artificial Intelligence-Assisted Setup for Digital Implant Planning: Accuracy, Time-Efficiency, and User Experience.","authors":"Panagiotis Ntovas, Marchand Laurent, Albrect Schnappauf, Finkelman Matthew, Marta Revilla-Leon, Wael Att","doi":"10.1111/clr.14382","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate the reliability and time efficiency of the conventional compared to the automatic artificial intelligence (AI) segmentation of the mandibular canal and registration of the CBCT with the model scan data, in relation to clinician's experience.</p><p><strong>Materials and methods: </strong>Twenty clinicians, 10 with a moderate and 10 with a high experience in computer-assisted implant planning, were asked to perform a bilateral localization of the mandibular canal, followed by a registration of the intraoral model scan with the CBCT. Subsequently, for each data set and each participant, the same operations were performed utilizing the AI tool. Statistical significance was assessed via a mixed model (using the PROC MIXED statement and the compound symmetry covariance structure).</p><p><strong>Results: </strong>The mean time for the segmentation of the mandibular canals and the registration of the models was 4.75 (2.03)min for the manual and 2.03 (0.36) min for the AI-automated operations (p < 0.001). The mean discrepancy in the mandibular canals was 0.71 (1.80) mm RMS error for the manual segmentation and 0.68 (0.36) RMS error for the AI-assisted segmentation (p > 0.05). For the registration between the CBCT and the intraoral scans, the mean discrepancy was 0.45 (0.16) mm for the manual and 0.37 (0.07) mm for the AI-assisted superimposition (p > 0.05).</p><p><strong>Conclusions: </strong>AI-automated implant planning tools are feasible options that can lead to a similar or better accuracy compared to the conventional manual workflow, providing improved time efficiency for both experienced and less experienced users. Further research including a variety of software and data sets is required to be able to generalize the outcomes of the present study.</p>","PeriodicalId":10455,"journal":{"name":"Clinical Oral Implants Research","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Oral Implants Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/clr.14382","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To investigate the reliability and time efficiency of the conventional compared to the automatic artificial intelligence (AI) segmentation of the mandibular canal and registration of the CBCT with the model scan data, in relation to clinician's experience.
Materials and methods: Twenty clinicians, 10 with a moderate and 10 with a high experience in computer-assisted implant planning, were asked to perform a bilateral localization of the mandibular canal, followed by a registration of the intraoral model scan with the CBCT. Subsequently, for each data set and each participant, the same operations were performed utilizing the AI tool. Statistical significance was assessed via a mixed model (using the PROC MIXED statement and the compound symmetry covariance structure).
Results: The mean time for the segmentation of the mandibular canals and the registration of the models was 4.75 (2.03)min for the manual and 2.03 (0.36) min for the AI-automated operations (p < 0.001). The mean discrepancy in the mandibular canals was 0.71 (1.80) mm RMS error for the manual segmentation and 0.68 (0.36) RMS error for the AI-assisted segmentation (p > 0.05). For the registration between the CBCT and the intraoral scans, the mean discrepancy was 0.45 (0.16) mm for the manual and 0.37 (0.07) mm for the AI-assisted superimposition (p > 0.05).
Conclusions: AI-automated implant planning tools are feasible options that can lead to a similar or better accuracy compared to the conventional manual workflow, providing improved time efficiency for both experienced and less experienced users. Further research including a variety of software and data sets is required to be able to generalize the outcomes of the present study.
期刊介绍:
Clinical Oral Implants Research conveys scientific progress in the field of implant dentistry and its related areas to clinicians, teachers and researchers concerned with the application of this information for the benefit of patients in need of oral implants. The journal addresses itself to clinicians, general practitioners, periodontists, oral and maxillofacial surgeons and prosthodontists, as well as to teachers, academicians and scholars involved in the education of professionals and in the scientific promotion of the field of implant dentistry.