{"title":"Suspended soils enrich local forest floor soils during the rainy season in a tropical monsoon rainforest of Hainan Island, South China.","authors":"Shitao Xu, Yachen Wang, Xudong Yu, Zeping Cai, Mingxun Ren","doi":"10.3389/fpls.2024.1415754","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Epiphytic plants are abundant in rainforests and often serve as traps for litter and dust falling from the canopy. As it accumulates, this material can form nutrient rich soils, which are likely involved in local nutrient cycling and ecological processes.</p><p><strong>Methods: </strong>To explore spatial and temporal variation in the influence of suspended soils on local nutrient cycles, we compared the physical, chemical and biological properties of suspended soils from the locally-dominant epiphytic Bird's nest fern (<i>Asplenium nidus</i> L.) to those of three types of forest floor soils (soil collected from upslope, downslope, and underneath the host tree) in a tropical monsoon rainforest in Bawangling National Nature Reserve on Hainan Island, China.</p><p><strong>Results: </strong>Suspended and forest floor soils were all acidic, with suspended soils having much higher organic matter (66.84%) and water content (~ 300%) than forest floor soils. Suspended soils contained significantly more available nitrogen, phosphorous, and potassium and had much higher urease, cellulase, and catalase activities, indicating that they harbored diverse microbial communities with higher decomposition and biomineralization activity.</p><p><strong>Discussion: </strong>Physicochemical traits of suspended soil and soil collected from under the host tree were significantly more similar in the rainy season than in the dry season, suggesting that suspended soils may contribute to local nutrient cycling as they are flushed out of epiphytic plants and enrich stemflow and forest floor soils.</p><p><strong>Conclusion: </strong>Thus, suspended soils play a role in local nutrient cycling, especially during the rainy season. This study provides empirical support for the seasonality and heterogeneity of forest floor soil enrichment by suspended soils in tropical monsoon rainforests.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1415754"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1415754","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Epiphytic plants are abundant in rainforests and often serve as traps for litter and dust falling from the canopy. As it accumulates, this material can form nutrient rich soils, which are likely involved in local nutrient cycling and ecological processes.
Methods: To explore spatial and temporal variation in the influence of suspended soils on local nutrient cycles, we compared the physical, chemical and biological properties of suspended soils from the locally-dominant epiphytic Bird's nest fern (Asplenium nidus L.) to those of three types of forest floor soils (soil collected from upslope, downslope, and underneath the host tree) in a tropical monsoon rainforest in Bawangling National Nature Reserve on Hainan Island, China.
Results: Suspended and forest floor soils were all acidic, with suspended soils having much higher organic matter (66.84%) and water content (~ 300%) than forest floor soils. Suspended soils contained significantly more available nitrogen, phosphorous, and potassium and had much higher urease, cellulase, and catalase activities, indicating that they harbored diverse microbial communities with higher decomposition and biomineralization activity.
Discussion: Physicochemical traits of suspended soil and soil collected from under the host tree were significantly more similar in the rainy season than in the dry season, suggesting that suspended soils may contribute to local nutrient cycling as they are flushed out of epiphytic plants and enrich stemflow and forest floor soils.
Conclusion: Thus, suspended soils play a role in local nutrient cycling, especially during the rainy season. This study provides empirical support for the seasonality and heterogeneity of forest floor soil enrichment by suspended soils in tropical monsoon rainforests.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.