Darrell Pilling, Trevor C Martinez, Richard H Gomer
{"title":"Inhibition of CCl4-induced liver inflammation and fibrosis by a NEU3 inhibitor.","authors":"Darrell Pilling, Trevor C Martinez, Richard H Gomer","doi":"10.1371/journal.pone.0308060","DOIUrl":null,"url":null,"abstract":"<p><p>Sialic acids are located on the ends of many glycoconjugates and are cleaved off by enzymes called sialidases (neuraminidases). Upregulation of neuraminidase 3 (NEU3) is associated with intestinal inflammation and colitis, neuroinflammation, and lung fibrosis. Genetic ablation of NEU3 or pharmacological inhibition of NEU3 reduces lung fibrosis in mice. To determine if inhibiting NEU3 can inhibit liver fibrosis in the commonly-used CCl4 model, in this report, we examined the effects of injections of the NEU3 inhibitor 2-acetyl pyridine (2AP). 2AP inhibited CCl4-induced weight loss in female but not male mice. 2AP attenuated CCl4-induced liver inflammation and fibrosis in male and female mice, but did not affect CCl4-induced steatosis. After CCl4 treatment, female but not male mice had significant increases in liver neutrophils, and 2AP attenuated this response. 2AP also reversed CCl4-induced liver desialylation and CCl4-induced increased expression of NEU3. Patients with pulmonary fibrosis have increased desialylation of some serum proteins, and elevated serum levels of NEU3. We find that sera from patients with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) have elevated desialylation of a serum protein and patients with NAFLD have increased levels of NEU3. These data suggest that elevated levels of NEU3 may be associated with liver inflammation and fibrosis, and that in mice this is ameliorated by injections of a NEU3 inhibitor.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 11","pages":"e0308060"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0308060","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sialic acids are located on the ends of many glycoconjugates and are cleaved off by enzymes called sialidases (neuraminidases). Upregulation of neuraminidase 3 (NEU3) is associated with intestinal inflammation and colitis, neuroinflammation, and lung fibrosis. Genetic ablation of NEU3 or pharmacological inhibition of NEU3 reduces lung fibrosis in mice. To determine if inhibiting NEU3 can inhibit liver fibrosis in the commonly-used CCl4 model, in this report, we examined the effects of injections of the NEU3 inhibitor 2-acetyl pyridine (2AP). 2AP inhibited CCl4-induced weight loss in female but not male mice. 2AP attenuated CCl4-induced liver inflammation and fibrosis in male and female mice, but did not affect CCl4-induced steatosis. After CCl4 treatment, female but not male mice had significant increases in liver neutrophils, and 2AP attenuated this response. 2AP also reversed CCl4-induced liver desialylation and CCl4-induced increased expression of NEU3. Patients with pulmonary fibrosis have increased desialylation of some serum proteins, and elevated serum levels of NEU3. We find that sera from patients with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) have elevated desialylation of a serum protein and patients with NAFLD have increased levels of NEU3. These data suggest that elevated levels of NEU3 may be associated with liver inflammation and fibrosis, and that in mice this is ameliorated by injections of a NEU3 inhibitor.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage