{"title":"The 3D dynamic visualization simulation of rice plant based on morphological structure model and the application in phenotypic calculation.","authors":"Yonghui Zhang, Yujie Zhang, Peng Zhang, Liang Tang, Xiaojun Liu, Weixing Cao, Yan Zhu","doi":"10.1371/journal.pone.0309052","DOIUrl":null,"url":null,"abstract":"<p><p>The virtual crop stands as a vital content in crop model research field, and has become an indispensable tool for exploring crop phenotypes. The focal objective of this undertaking is to realize three-dimensional (3D) dynamic visualization simulations of rice individual and rice populations, as well as to predict rice phenotype using virtual rice. Leveraging our laboratory's existing research findings, we have realized 3D dynamic visualizations of rice individual and populations across various growth degree days (GDD) by integrating the synchronization relationship between the above-ground parts and the root system in rice plant. The resulting visualization effects are realistic with better predictive capability for rice morphological changes. We conducted a field experiment in Anhui Province in 2019, and obtained leaf area index data for two distinct rice cultivars at the tiller stage, jointing stage, and flowering stage. A method of segmenting leaf based on the virtual rice model is employed to predict the leaf area index. A comparative analysis between the measured and simulated leaf area index yielded relative errors spanning from 7.58% to 12.69%. Additionally, the root mean square error, the mean absolute error, and the coefficient of determination were calculated as 0.56, 0.55, and 0.86, respectively. All the evaluation criteria indicate a commendable level of accuracy. These advancements provide both technical and modeling support for the development of virtual crops and the prediction of crop phenotypes.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 11","pages":"e0309052"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0309052","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The virtual crop stands as a vital content in crop model research field, and has become an indispensable tool for exploring crop phenotypes. The focal objective of this undertaking is to realize three-dimensional (3D) dynamic visualization simulations of rice individual and rice populations, as well as to predict rice phenotype using virtual rice. Leveraging our laboratory's existing research findings, we have realized 3D dynamic visualizations of rice individual and populations across various growth degree days (GDD) by integrating the synchronization relationship between the above-ground parts and the root system in rice plant. The resulting visualization effects are realistic with better predictive capability for rice morphological changes. We conducted a field experiment in Anhui Province in 2019, and obtained leaf area index data for two distinct rice cultivars at the tiller stage, jointing stage, and flowering stage. A method of segmenting leaf based on the virtual rice model is employed to predict the leaf area index. A comparative analysis between the measured and simulated leaf area index yielded relative errors spanning from 7.58% to 12.69%. Additionally, the root mean square error, the mean absolute error, and the coefficient of determination were calculated as 0.56, 0.55, and 0.86, respectively. All the evaluation criteria indicate a commendable level of accuracy. These advancements provide both technical and modeling support for the development of virtual crops and the prediction of crop phenotypes.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage