{"title":"Study on the mechanism of brain injury caused by acute diquat poisoning based on metabolomics.","authors":"Chaocheng Wang, Hui Hu, Junzhao Liu, Xia Rong, Jing Zhang, Yu Du","doi":"10.1016/j.taap.2024.117161","DOIUrl":null,"url":null,"abstract":"<p><p>Brain injury following acute diquat poisoning has become increasingly common in moderate to severe cases, with unclear pathogenesis and high mortality. To investigate this, we conducted metabolomics on brain tissue from poisoned rats, combined with clinical biochemical and pathological analyses. In the high-dose group, 24 metabolites showed significant differences compared to the control group: 18 were upregulated, including cytosine, sedoheptulose-7-phosphate, indole, 3-dehydroshikimate, etc.; 6 were downregulated, including 6-phosphogluconic acid, 3-hydroxybenzoic acid, dAMP, etc. In the low-dose group, 10 metabolites showed significant differences: 4 were upregulated, including pentamidine, γ-tocotrienol, benzoylecgonine, etc.; and 6 were downregulated, including dAMP, glutathione, 3-hydroxybenzoic acid, etc. Enrichment analysis identified two key pathways-phenylalanine, tyrosine, and tryptophan biosynthesis, and the pentose phosphate pathway-as involved in brain injury. ROC analysis of six differential metabolites showed that sedoheptulose-7-phosphate, (2R)-2-hydroxy-3-(phosphonatooxy)propanoate, and 3-hydroxybenzoic acid had AUC values above 0.8. These findings suggest that these three metabolites demonstrate strong diagnostic potential for brain injury induced by diquat poisoning. Correlation analysis linked these biomarkers to clinical indicators such as neutrophil count and the eutrophil to lymphocyte ratio, supporting their relevance. This study provides insights into the mechanisms and biomarkers of diquat-induced brain injury, offering a foundation for future treatment and rapid detection.</p>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":" ","pages":"117161"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.taap.2024.117161","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Brain injury following acute diquat poisoning has become increasingly common in moderate to severe cases, with unclear pathogenesis and high mortality. To investigate this, we conducted metabolomics on brain tissue from poisoned rats, combined with clinical biochemical and pathological analyses. In the high-dose group, 24 metabolites showed significant differences compared to the control group: 18 were upregulated, including cytosine, sedoheptulose-7-phosphate, indole, 3-dehydroshikimate, etc.; 6 were downregulated, including 6-phosphogluconic acid, 3-hydroxybenzoic acid, dAMP, etc. In the low-dose group, 10 metabolites showed significant differences: 4 were upregulated, including pentamidine, γ-tocotrienol, benzoylecgonine, etc.; and 6 were downregulated, including dAMP, glutathione, 3-hydroxybenzoic acid, etc. Enrichment analysis identified two key pathways-phenylalanine, tyrosine, and tryptophan biosynthesis, and the pentose phosphate pathway-as involved in brain injury. ROC analysis of six differential metabolites showed that sedoheptulose-7-phosphate, (2R)-2-hydroxy-3-(phosphonatooxy)propanoate, and 3-hydroxybenzoic acid had AUC values above 0.8. These findings suggest that these three metabolites demonstrate strong diagnostic potential for brain injury induced by diquat poisoning. Correlation analysis linked these biomarkers to clinical indicators such as neutrophil count and the eutrophil to lymphocyte ratio, supporting their relevance. This study provides insights into the mechanisms and biomarkers of diquat-induced brain injury, offering a foundation for future treatment and rapid detection.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.