A digital phenotyping dataset for impending panic symptoms: a prospective longitudinal study.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-11-21 DOI:10.1038/s41597-024-04147-6
Sooyoung Jang, Tai Hui Sun, Seunghyun Shin, Heon-Jeong Lee, Yu-Bin Shin, Ji Won Yeom, Yu Rang Park, Chul-Hyun Cho
{"title":"A digital phenotyping dataset for impending panic symptoms: a prospective longitudinal study.","authors":"Sooyoung Jang, Tai Hui Sun, Seunghyun Shin, Heon-Jeong Lee, Yu-Bin Shin, Ji Won Yeom, Yu Rang Park, Chul-Hyun Cho","doi":"10.1038/s41597-024-04147-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the utilization of digital phenotypes and machine learning algorithms to predict impending panic symptoms in patients with mood and anxiety disorders. A cohort of 43 patients was monitored over a two-year period, with data collected from smartphone applications and wearable devices. This research aimed to differentiate between the day before panic (DBP) and stable days without symptoms. With RandomForest, GradientBoost, and XGBoost classifiers, the study analyzed 3,969 data points, including 254 DBP events. The XGBoost model demonstrated performance with a ROC-AUC score of 0.905, while a simplified model using only the top 10 variables maintained an ROC-AUC of 0.903. Key predictors of panic events included evaluated Childhood Trauma Questionnaire scores, increased step counts, and higher anxiety levels. These findings indicate the potential of machine learning algorithms leveraging digital phenotypes to predict panic symptoms, thereby supporting the development of proactive and personalized digital therapies and providing insights into real-life indicators that may exacerbate panic symptoms in this population.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1264"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04147-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the utilization of digital phenotypes and machine learning algorithms to predict impending panic symptoms in patients with mood and anxiety disorders. A cohort of 43 patients was monitored over a two-year period, with data collected from smartphone applications and wearable devices. This research aimed to differentiate between the day before panic (DBP) and stable days without symptoms. With RandomForest, GradientBoost, and XGBoost classifiers, the study analyzed 3,969 data points, including 254 DBP events. The XGBoost model demonstrated performance with a ROC-AUC score of 0.905, while a simplified model using only the top 10 variables maintained an ROC-AUC of 0.903. Key predictors of panic events included evaluated Childhood Trauma Questionnaire scores, increased step counts, and higher anxiety levels. These findings indicate the potential of machine learning algorithms leveraging digital phenotypes to predict panic symptoms, thereby supporting the development of proactive and personalized digital therapies and providing insights into real-life indicators that may exacerbate panic symptoms in this population.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对即将出现的恐慌症状的数字表型数据集:一项前瞻性纵向研究。
这项研究探讨了如何利用数字表型和机器学习算法来预测情绪和焦虑症患者即将出现的恐慌症状。通过智能手机应用程序和可穿戴设备收集的数据,对 43 名患者进行了为期两年的监测。这项研究旨在区分恐慌前一天(DBP)和无症状的稳定天数。该研究使用 RandomForest、GradientBoost 和 XGBoost 分类器分析了 3969 个数据点,其中包括 254 个 DBP 事件。XGBoost 模型的 ROC-AUC 得分为 0.905,而仅使用前 10 个变量的简化模型的 ROC-AUC 为 0.903。恐慌事件的主要预测因素包括儿童创伤问卷评估得分、步数增加和焦虑水平升高。这些研究结果表明了机器学习算法利用数字表型预测恐慌症状的潜力,从而支持了前瞻性和个性化数字疗法的开发,并提供了对可能加剧该人群恐慌症状的现实生活指标的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A digital phenotyping dataset for impending panic symptoms: a prospective longitudinal study. Chisco: An EEG-based BCI dataset for decoding of imagined speech. Database of surface water diversion sites and daily withdrawals for the Upper Colorado River Basin, 1980-2022. Dataset of Smartphone-Based Finger Tapping Test. Expanding the genome information on Bacillales for biosynthetic gene cluster discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1