Patterns of crossover distribution in Drosophila mauritiana necessitate a re-thinking of the centromere effect on crossing over.

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Genetics Pub Date : 2025-03-07 DOI:10.1093/genetics/iyaf039
R Scott Hawley, Andrew Price, Hua Li, Madhav Jagannathan, Cynthia Staber, Stacie E Hughes, Stefanie Williams, Anoja Perera, Rhonda R Egidy, Amanda Lawlor, Danny E Miller, Justin P Blumenstiel
{"title":"Patterns of crossover distribution in Drosophila mauritiana necessitate a re-thinking of the centromere effect on crossing over.","authors":"R Scott Hawley, Andrew Price, Hua Li, Madhav Jagannathan, Cynthia Staber, Stacie E Hughes, Stefanie Williams, Anoja Perera, Rhonda R Egidy, Amanda Lawlor, Danny E Miller, Justin P Blumenstiel","doi":"10.1093/genetics/iyaf039","DOIUrl":null,"url":null,"abstract":"<p><p>We present a SNP-based crossover map for Drosophila mauritiana. Using females derived by crossing two different strains of D. mauritiana, we analyzed crossing over on all five major chromosome arms. Analysis of 105 male progeny allowed us to identify 327 crossover chromatids bearing single, double, or triple crossover events, representing 398 crossover events. We mapped the crossovers along these five chromosome arms using a genome sequence map that includes the euchromatin-heterochromatin boundary. Confirming previous studies, we show that the overall crossover frequency in D. mauritiana is higher than is seen in D. melanogaster. Much of the increase in exchange frequency in D. mauritiana is due to a greatly diminished centromere effect. Using larval neuroblast metaphases from D. mauritiana - D. melanogaster hybrids we show that the lengths of the pericentromeric heterochromatin do not differ substantially between the species, and thus cannot explain the observed differences in crossover distribution. Using a new and robust maximum likelihood estimation tool for obtaining Weinstein tetrad distributions, we observed an increase in bivalents with two or more crossovers when compared to D. melanogaster. This increase in crossing over along the arms of D. mauritiana likely reflects an expansion of the crossover-available euchromatin caused by a difference in the strength of the centromere effect. The crossover pattern in D. mauritiana conflicts with the commonly accepted view of centromeres as strong polar suppressors of exchange (whose intensity is buffered by sequence non-specific heterochromatin) and demonstrates the importance of expanding such studies into other species of Drosophila.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf039","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a SNP-based crossover map for Drosophila mauritiana. Using females derived by crossing two different strains of D. mauritiana, we analyzed crossing over on all five major chromosome arms. Analysis of 105 male progeny allowed us to identify 327 crossover chromatids bearing single, double, or triple crossover events, representing 398 crossover events. We mapped the crossovers along these five chromosome arms using a genome sequence map that includes the euchromatin-heterochromatin boundary. Confirming previous studies, we show that the overall crossover frequency in D. mauritiana is higher than is seen in D. melanogaster. Much of the increase in exchange frequency in D. mauritiana is due to a greatly diminished centromere effect. Using larval neuroblast metaphases from D. mauritiana - D. melanogaster hybrids we show that the lengths of the pericentromeric heterochromatin do not differ substantially between the species, and thus cannot explain the observed differences in crossover distribution. Using a new and robust maximum likelihood estimation tool for obtaining Weinstein tetrad distributions, we observed an increase in bivalents with two or more crossovers when compared to D. melanogaster. This increase in crossing over along the arms of D. mauritiana likely reflects an expansion of the crossover-available euchromatin caused by a difference in the strength of the centromere effect. The crossover pattern in D. mauritiana conflicts with the commonly accepted view of centromeres as strong polar suppressors of exchange (whose intensity is buffered by sequence non-specific heterochromatin) and demonstrates the importance of expanding such studies into other species of Drosophila.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
期刊最新文献
Patterns of crossover distribution in Drosophila mauritiana necessitate a re-thinking of the centromere effect on crossing over. Evaluating ARG-estimation methods in the context of estimating population-mean polygenic score histories. The Unified Phenotype Ontology (uPheno): A framework for cross-species integrative phenomics. Posterior estimation of longitudinal variance components from non-longitudinal data using Bayesian Gaussian process model. Complex determinants of R-loop formation at transposable elements and major DNA satellites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1