Sebastian Larsson Herrera, Zaid Badra, Mette Frimodt Hansen, Advaith Chakravarthy Shankarkumar, Isabella Kleman, Marco Tasin, Teun Dekker
{"title":"Ecological intensification for biocontrol of aphids requires severing myrmecophily","authors":"Sebastian Larsson Herrera, Zaid Badra, Mette Frimodt Hansen, Advaith Chakravarthy Shankarkumar, Isabella Kleman, Marco Tasin, Teun Dekker","doi":"10.1007/s10340-024-01843-5","DOIUrl":null,"url":null,"abstract":"<p>With the rollback of insecticides, novel tools for pest control are urgently needed. Aphids are particularly a major concern with few sustainable control alternatives. Ecological intensification has been promoted as a way of “inviting\" back nature’s self-regulating abilities into agricultural production systems. Although such measures enhance the presence of natural enemies in agroecosystems, we demonstrate that in an ecologically intensified apple orchard, biocontrol of rosy apple aphid was minimal. We verified why the biodiverse settings did not result in enhanced ecosystem services, i.e., biological control of the rosy apple aphid. Close monitoring of food–web interactions in thousands of aphid colonies showed that tending ants dominated responses, while those of natural enemies were weak or absent. However, application of artificial aphid honeydew diverted ants from tending aphids and flipped the myrmecophily-dominated state into favoring numerical responses of a guild of natural enemies. Responses were swift and controlled both <i>Aphis pomi</i> and <i>Dysaphis plantaginea</i>, provided intervention was synced with aphid and predator phenology. Although myrmecophily in aphids is well-known on its own accord, it has been completely overlooked in ecological intensification. To unlock the aphid-biocontrol potential provided through ecological intensification, myrmecophily needs to be disrupted. Although particularly true for perennial systems, generally practices that reduce soil disturbance favor ants and may amplify aphid pests, thereby reducing biocontrol impacts in ecological intensification efforts. Harnessing ecosystem services requires careful analysis and good understanding of agroecosystem intricacies.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"35 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01843-5","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rollback of insecticides, novel tools for pest control are urgently needed. Aphids are particularly a major concern with few sustainable control alternatives. Ecological intensification has been promoted as a way of “inviting" back nature’s self-regulating abilities into agricultural production systems. Although such measures enhance the presence of natural enemies in agroecosystems, we demonstrate that in an ecologically intensified apple orchard, biocontrol of rosy apple aphid was minimal. We verified why the biodiverse settings did not result in enhanced ecosystem services, i.e., biological control of the rosy apple aphid. Close monitoring of food–web interactions in thousands of aphid colonies showed that tending ants dominated responses, while those of natural enemies were weak or absent. However, application of artificial aphid honeydew diverted ants from tending aphids and flipped the myrmecophily-dominated state into favoring numerical responses of a guild of natural enemies. Responses were swift and controlled both Aphis pomi and Dysaphis plantaginea, provided intervention was synced with aphid and predator phenology. Although myrmecophily in aphids is well-known on its own accord, it has been completely overlooked in ecological intensification. To unlock the aphid-biocontrol potential provided through ecological intensification, myrmecophily needs to be disrupted. Although particularly true for perennial systems, generally practices that reduce soil disturbance favor ants and may amplify aphid pests, thereby reducing biocontrol impacts in ecological intensification efforts. Harnessing ecosystem services requires careful analysis and good understanding of agroecosystem intricacies.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.