Gap filling between GRACE and GRACE-FO missions: assessment of interpolation techniques

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geodesy Pub Date : 2024-11-23 DOI:10.1007/s00190-024-01917-3
Hugo Lecomte, Severine Rosat, Mioara Mandea
{"title":"Gap filling between GRACE and GRACE-FO missions: assessment of interpolation techniques","authors":"Hugo Lecomte, Severine Rosat, Mioara Mandea","doi":"10.1007/s00190-024-01917-3","DOIUrl":null,"url":null,"abstract":"<p>We propose a benchmark for comparing gap-filling techniques used on global time-variable gravity field time-series. The Gravity Recovery and Climate Experiment (GRACE) and the GRACE Follow-On missions provide products to study the Earth’s time-variable gravity field. However, the presence of missing months in the measurements poses challenges for understanding specific Earth processes through the gravity field. We reproduce, adapt, and compare satellite-monitoring and interpolation techniques for filling these missing months in GRACE and GRACE Follow-On products on a global scale. Satellite-monitoring techniques utilize solutions from Swarm and satellite laser ranging, while interpolation techniques rely on GRACE and/or Swarm solutions. We assess a wide range of interpolation techniques, including least-squares fitting, principal component analysis, singular spectrum analysis, multichannel singular spectrum analysis, auto-regressive models, and the incorporation of prior data in these techniques. To inter-compare these techniques, we employ a remove-and-restore approach, removing existing GRACE products and predicting missing months using interpolation techniques. We provide detailed comparisons of the techniques and discuss their strengths and limitations. The auto-regressive interpolation technique delivers the best score according to our evaluation metric. The interpolation based on a least-squares fitting of constant, trend, annual, and semi-annual cycles offers a simple and effective prediction with a good score. Through this assessment, we establish a starting benchmark for gap-filling techniques in Earth’s time-variable gravity field analysis.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"4 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01917-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a benchmark for comparing gap-filling techniques used on global time-variable gravity field time-series. The Gravity Recovery and Climate Experiment (GRACE) and the GRACE Follow-On missions provide products to study the Earth’s time-variable gravity field. However, the presence of missing months in the measurements poses challenges for understanding specific Earth processes through the gravity field. We reproduce, adapt, and compare satellite-monitoring and interpolation techniques for filling these missing months in GRACE and GRACE Follow-On products on a global scale. Satellite-monitoring techniques utilize solutions from Swarm and satellite laser ranging, while interpolation techniques rely on GRACE and/or Swarm solutions. We assess a wide range of interpolation techniques, including least-squares fitting, principal component analysis, singular spectrum analysis, multichannel singular spectrum analysis, auto-regressive models, and the incorporation of prior data in these techniques. To inter-compare these techniques, we employ a remove-and-restore approach, removing existing GRACE products and predicting missing months using interpolation techniques. We provide detailed comparisons of the techniques and discuss their strengths and limitations. The auto-regressive interpolation technique delivers the best score according to our evaluation metric. The interpolation based on a least-squares fitting of constant, trend, annual, and semi-annual cycles offers a simple and effective prediction with a good score. Through this assessment, we establish a starting benchmark for gap-filling techniques in Earth’s time-variable gravity field analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GRACE 和 GRACE-FO 任务之间的差距填补:插值技术评估
我们提出了一个基准,用于比较全球时变重力场时间序列中使用的填补空白技术。重力恢复与气候实验(GRACE)和 GRACE 后续任务提供了研究地球时变重力场的产品。然而,由于测量中存在缺失月份,这给通过重力场了解特定地球过程带来了挑战。我们重现、调整和比较了卫星监测和插值技术,以在全球范围内填补 GRACE 和 GRACE 后续产品中的这些缺失月份。卫星监测技术利用 Swarm 和卫星激光测距的解决方案,而插值技术则依赖于 GRACE 和/或 Swarm 解决方案。我们评估了多种内插技术,包括最小二乘拟合、主成分分析、奇异频谱分析、多通道奇异频谱分析、自动回归模型,以及在这些技术中纳入先验数据。为了对这些技术进行相互比较,我们采用了移除和恢复方法,移除现有的 GRACE 产品,并使用插值技术预测缺失月份。我们对这些技术进行了详细比较,并讨论了它们的优势和局限性。根据我们的评估指标,自动回归插值技术得分最高。基于常数、趋势、年周期和半年周期的最小二乘拟合的插值法提供了简单有效的预测,得分也很高。通过这项评估,我们为地球时变重力场分析中的填补空白技术建立了一个起始基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
期刊最新文献
Flatness constraints in the estimation of GNSS satellite antenna phase center offsets and variations A processing strategy for handling latency of PPP-RTK corrections Gap filling between GRACE and GRACE-FO missions: assessment of interpolation techniques Modified Bayesian method for simultaneously imaging fault geometry and slip distribution with reduced uncertainty, applied to 2017 Mw 7.3 Sarpol-e Zahab (Iran) earthquake Global 3D ionospheric shape function modeling with kriging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1