Pub Date : 2025-01-17DOI: 10.1007/s00190-024-01932-4
Zhitao Lyu, Yang Gao
Partial ambiguity resolution (PAR) has been widely adopted in real-time kinematic (RTK) and precise point positioning with augmentation from continuously operating reference station (PPP-RTK). However, current PAR methods, either in the position domain or the ambiguity domain, suffer from high false alarm and miss detection, particularly in challenging environments with poor satellite geometry and observations contaminated by non-line-of-sight (NLOS) effects, gross errors, biases, and high observation noise. To address these issues, a PAR method based on machine learning is proposed to significantly improve the correct fix rate and positioning accuracy of PAR in challenging environments. This method combines two support vector machine (SVM) classifiers to effectively identify and exclude ambiguities those are contaminated by bias sources from PAR without relying on satellite geometry. The proposed method is validated with three vehicle-based field tests covering open sky, suburban, and dense urban environments, and the results show significant improvements in terms of correct fix rate and positioning accuracy over the traditional PAR method that only utilizes ambiguity covariances. The fix rates achieved with the proposed method are 93.9%, 81.9%, and 93.1% with the three respective field tests, with no wrong fixes, compared to 72.8%, 20.9%, and 16.0% correct fix rates using the traditional method. The positioning error root mean square (RMS) is 0.020 m, 0.035 m, and 0.056 m in the east, north, and up directions for the first field test, 0.027 m, 0.080 m, and 0.126 m for the second field test, and 0.035 m, 0.042 m, and 0.071 m for the third field test. In contrast, only decimeter- to meter-level accuracy was obtainable with these datasets using the traditional method due to the high wrong fix rate. The proposed method provides a correct and fast time-to-first-fix (TTFF) of 3–5 s, even in challenging environments. Overall, the proposed method offers significant improvements in positioning accuracy and ambiguity fix rate with high reliability, making it a promising solution for PAR in challenging environments.
{"title":"A machine learning-based partial ambiguity resolution method for precise positioning in challenging environments","authors":"Zhitao Lyu, Yang Gao","doi":"10.1007/s00190-024-01932-4","DOIUrl":"https://doi.org/10.1007/s00190-024-01932-4","url":null,"abstract":"<p>Partial ambiguity resolution (PAR) has been widely adopted in real-time kinematic (RTK) and precise point positioning with augmentation from continuously operating reference station (PPP-RTK). However, current PAR methods, either in the position domain or the ambiguity domain, suffer from high false alarm and miss detection, particularly in challenging environments with poor satellite geometry and observations contaminated by non-line-of-sight (NLOS) effects, gross errors, biases, and high observation noise. To address these issues, a PAR method based on machine learning is proposed to significantly improve the correct fix rate and positioning accuracy of PAR in challenging environments. This method combines two support vector machine (SVM) classifiers to effectively identify and exclude ambiguities those are contaminated by bias sources from PAR without relying on satellite geometry. The proposed method is validated with three vehicle-based field tests covering open sky, suburban, and dense urban environments, and the results show significant improvements in terms of correct fix rate and positioning accuracy over the traditional PAR method that only utilizes ambiguity covariances. The fix rates achieved with the proposed method are 93.9%, 81.9%, and 93.1% with the three respective field tests, with no wrong fixes, compared to 72.8%, 20.9%, and 16.0% correct fix rates using the traditional method. The positioning error root mean square (RMS) is 0.020 m, 0.035 m, and 0.056 m in the east, north, and up directions for the first field test, 0.027 m, 0.080 m, and 0.126 m for the second field test, and 0.035 m, 0.042 m, and 0.071 m for the third field test. In contrast, only decimeter- to meter-level accuracy was obtainable with these datasets using the traditional method due to the high wrong fix rate. The proposed method provides a correct and fast time-to-first-fix (TTFF) of 3–5 s, even in challenging environments. Overall, the proposed method offers significant improvements in positioning accuracy and ambiguity fix rate with high reliability, making it a promising solution for PAR in challenging environments.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"83 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1007/s00190-024-01930-6
Shuyun Zheng, Hao Zhou, Zhiyu Ma, Xiang Guo, Zhicai Luo
The development of optical clocks has experienced significant acceleration in recent years, positioning them as one of the most promising quantum optical sensors for next-generation gravimetric missions (NGGMs). This study investigates the feasibility of retrieving the temporal gravity field via improved optical clocks through a closed-loop simulation. It evaluates optical clock capabilities in temporal gravity field inversion by considering the clock noise characteristics, designing satellite formations, and simulating the performance of optical clocks. The results indicate that optical clocks exhibit higher sensitivity to low-degree gravity field signals. However, when the optical clock noise level drops below 1 × 10−19(/sqrt{uptau }) (τ being the averaging time in seconds) in the satellite-to-ground (SG) mode or below 1 × 10−20(/sqrt{uptau }) in the satellite-to-satellite (SS) mode, atmospheric and oceanic (AO) errors become the dominant source of error. At this noise level, optical clocks can detect time-variable gravity signals up to approximately degree 30. Compared to existing gravity measurement missions such as GRACE-FO, optical clocks exhibit consistent results in detecting signals below degree 20. If the orbital altitude is reduced to 250 km, the performance of optical clocks across all degrees aligns with the results of GRACE-FO. Furthermore, the study reveals that lowering the orbital altitude of satellite-based optical clocks from 485 to 250 km improves results by an average of 33%. Switching from the SS mode to the SG mode results in an average improvement of 51%, while each order-of-magnitude improvement in clock precision enhances results by an average of 60%. In summary, these findings highlight the tremendous potential of optical clock technology in determining Earth’s temporal gravity field and provide crucial technological support for NGGMs.
{"title":"On the feasibility of retrieving the temporal gravity field via improved optical clocks","authors":"Shuyun Zheng, Hao Zhou, Zhiyu Ma, Xiang Guo, Zhicai Luo","doi":"10.1007/s00190-024-01930-6","DOIUrl":"https://doi.org/10.1007/s00190-024-01930-6","url":null,"abstract":"<p>The development of optical clocks has experienced significant acceleration in recent years, positioning them as one of the most promising quantum optical sensors for next-generation gravimetric missions (NGGMs). This study investigates the feasibility of retrieving the temporal gravity field via improved optical clocks through a closed-loop simulation. It evaluates optical clock capabilities in temporal gravity field inversion by considering the clock noise characteristics, designing satellite formations, and simulating the performance of optical clocks. The results indicate that optical clocks exhibit higher sensitivity to low-degree gravity field signals. However, when the optical clock noise level drops below 1 × 10<sup>−19</sup><span>(/sqrt{uptau })</span> (τ being the averaging time in seconds) in the satellite-to-ground (SG) mode or below 1 × 10<sup>−20</sup><span>(/sqrt{uptau })</span> in the satellite-to-satellite (SS) mode, atmospheric and oceanic (AO) errors become the dominant source of error. At this noise level, optical clocks can detect time-variable gravity signals up to approximately degree 30. Compared to existing gravity measurement missions such as GRACE-FO, optical clocks exhibit consistent results in detecting signals below degree 20. If the orbital altitude is reduced to 250 km, the performance of optical clocks across all degrees aligns with the results of GRACE-FO. Furthermore, the study reveals that lowering the orbital altitude of satellite-based optical clocks from 485 to 250 km improves results by an average of 33%. Switching from the SS mode to the SG mode results in an average improvement of 51%, while each order-of-magnitude improvement in clock precision enhances results by an average of 60%. In summary, these findings highlight the tremendous potential of optical clock technology in determining Earth’s temporal gravity field and provide crucial technological support for NGGMs.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"4 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1007/s00190-024-01907-5
Zhenyu Wang, Qian Zhao, Zhigang Shao, Wuxing Wang
Lateral inhomogeneity in the Earth’s mantle affects the tidal response. The current study reformulates the expressions for estimating the lateral inhomogeneity effects on tidal gravity with respect to the unperturbed Earth and supplements some critical derivation process to enhance the methodology. The effects of lateral inhomogeneity are calculated using several real Earth models. By considering the collective contributions of seismic wave velocity disturbances and density disturbance, the global theoretical changes of semidiurnal gravimetric factor are obtained, which vary from − 0.22 to 0.22% compared to those in a layered Earth model, about 1/2 of the ellipticity’s effect. The gravity changes caused by lateral-inhomogeneous disturbances are also computed and turn out to be up to 0.16% compared to the changes caused by tide-generating potential. The current study compares the influences of lateral inhomogeneity with rotation and ocean tide loading. The results indicate that the rotation and ellipticity on tidal gravity are the most dominant factors, the ocean tide loading is the moderate one, and the lateral inhomogeneity in the mantle has the least significant influence. Moreover, an anti-correlation between the effective elastic thickness and gravimetric factor change caused by lateral inhomogeneity is found, implying that it is difficult to generate tidal response at regions with high rigidity. We argue that the gravimetric factor change can be used as an effective indicator for lithospheric strength.
{"title":"From one-dimensional to three-dimensional: effect of lateral inhomogeneity on tidal gravity and its implications for lithospheric strength","authors":"Zhenyu Wang, Qian Zhao, Zhigang Shao, Wuxing Wang","doi":"10.1007/s00190-024-01907-5","DOIUrl":"https://doi.org/10.1007/s00190-024-01907-5","url":null,"abstract":"<p>Lateral inhomogeneity in the Earth’s mantle affects the tidal response. The current study reformulates the expressions for estimating the lateral inhomogeneity effects on tidal gravity with respect to the unperturbed Earth and supplements some critical derivation process to enhance the methodology. The effects of lateral inhomogeneity are calculated using several real Earth models. By considering the collective contributions of seismic wave velocity disturbances and density disturbance, the global theoretical changes of semidiurnal gravimetric factor are obtained, which vary from − 0.22 to 0.22% compared to those in a layered Earth model, about 1/2 of the ellipticity’s effect. The gravity changes caused by lateral-inhomogeneous disturbances are also computed and turn out to be up to 0.16% compared to the changes caused by tide-generating potential. The current study compares the influences of lateral inhomogeneity with rotation and ocean tide loading. The results indicate that the rotation and ellipticity on tidal gravity are the most dominant factors, the ocean tide loading is the moderate one, and the lateral inhomogeneity in the mantle has the least significant influence. Moreover, an anti-correlation between the effective elastic thickness and gravimetric factor change caused by lateral inhomogeneity is found, implying that it is difficult to generate tidal response at regions with high rigidity. We argue that the gravimetric factor change can be used as an effective indicator for lithospheric strength.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"31 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The regional sea level budget and interannual sea level changes around Taiwan and Philippines are studied using altimetry, GRACE, and in-situ hydrographic data during 1993‒2021. Results show that the average sea level trend around Taiwan and Philippines during 1993–2021 derived from the altimetric data is 3.6 ± 0.2 mm/yr. Over 2002–2021, the study shows closure of sea level budget in the eastern ocean of Taiwan and Philippines within the observed data uncertainties, and the ocean mass accounts for 88%–100% of the observed sea level rise. In contrast, the sea level budget is not closed in the western ocean of Taiwan and Philippines, probably due to the lack of complete coverage by in-situ ocean observing systems. In addition, both regional sea level anomalies and their steric component around Taiwan and Philippines exhibit pronounced interannual and decadal variabilities. The trade wind stress associated with El Niño–Southern Oscillation and Pacific Decadal Oscillation offers a compelling explanation for the interannual and decadal signals of sea level anomalies in the southern ocean of Taiwan, with negative correlations of − 0.78 to − 0.64, indicating that trade wind stress makes a negative contribution to interannual-to-decadal sea level variability. In the northwestern ocean of Taiwan, the sea level variation is strongly influenced by the local monsoon system and shallow bathymetry with an annual amplitude of 90.3 ± 2.9 mm, larger than those in other regions around Taiwan and Philippines, where ocean mass is dominant with a high correlation with the sea level (+ 0.75 to + 0.78).
{"title":"Regional sea level budget around Taiwan and Philippines over 2002‒2021 inferred from GRACE, altimetry, and in-situ hydrographic data","authors":"Wen-Hau Lan, Chi-Ming Lee, Chung-Yen Kuo, Li-Ching Lin, Eko Yuli Handoko","doi":"10.1007/s00190-024-01928-0","DOIUrl":"https://doi.org/10.1007/s00190-024-01928-0","url":null,"abstract":"<p>The regional sea level budget and interannual sea level changes around Taiwan and Philippines are studied using altimetry, GRACE, and <i>in-situ</i> hydrographic data during 1993‒2021. Results show that the average sea level trend around Taiwan and Philippines during 1993–2021 derived from the altimetric data is 3.6 ± 0.2 mm/yr. Over 2002–2021, the study shows closure of sea level budget in the eastern ocean of Taiwan and Philippines within the observed data uncertainties, and the ocean mass accounts for 88%–100% of the observed sea level rise. In contrast, the sea level budget is not closed in the western ocean of Taiwan and Philippines, probably due to the lack of complete coverage by <i>in-situ</i> ocean observing systems. In addition, both regional sea level anomalies and their steric component around Taiwan and Philippines exhibit pronounced interannual and decadal variabilities. The trade wind stress associated with El Niño–Southern Oscillation and Pacific Decadal Oscillation offers a compelling explanation for the interannual and decadal signals of sea level anomalies in the southern ocean of Taiwan, with negative correlations of − 0.78 to − 0.64, indicating that trade wind stress makes a negative contribution to interannual-to-decadal sea level variability. In the northwestern ocean of Taiwan, the sea level variation is strongly influenced by the local monsoon system and shallow bathymetry with an annual amplitude of 90.3 ± 2.9 mm, larger than those in other regions around Taiwan and Philippines, where ocean mass is dominant with a high correlation with the sea level (+ 0.75 to + 0.78).</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"31 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1007/s00190-024-01922-6
Xiaopeng Li, Robert Čunderlík, Marek Macák, Dana J. Caccamise, Zuzana Minarechová, Pavol Zahorec, Juraj Papčo, Daniel R. Roman, Jordan Krcmaric, Miao Lin
Numerical methods, like the finite element method (FEM) or finite volume method (FVM), are widely used to provide solutions in many boundary value problems. In previous studies, these numerical methods have also been applied in geodesy but demanded extensive computations because the upper boundary condition was usually set up at the satellite orbit level, hundreds of kilometers above the Earth. The relatively large distances between the lower boundary of the Earth's surface and the upper boundary exacerbate the computation loads because of the required discretization in between. Considering that many areas, such as the US, have uniformly distributed airborne gravity data just a few kilometers above the topography, we adapt the upper boundary from the satellite orbit level to the mean flight level of the airborne gravimetry. The significant decrease in the domain of solution dramatically reduces the large computation demand for FEM or FVM. This paper demonstrates the advantages of using FVM in the decreased domain in simulated and actual field cases in study areas of interest. In the simulated case, the FVM numerical results show that precision improvement of about an order of magnitude can be obtained when moving the upper boundary from 250 to 10 km, the upper altitude of the GRAV-D flights. A 2–3 cm level of accurate quasi-geoid model can be obtained for the actual datasets depending on different schemes used to model the topographic mass. In flat areas, the FVM solution can reach to about 1 cm precision, which is comparable with the counterparts from classical methods. The paper also demonstrates how to find the upper boundary if no airborne data are available. Finally, the numerical method provides a 3D discrete representation of the entire local gravity field instead of a surface solution, a (quasi) geoid model.
{"title":"Finite volume method: a good match to airborne gravimetry?","authors":"Xiaopeng Li, Robert Čunderlík, Marek Macák, Dana J. Caccamise, Zuzana Minarechová, Pavol Zahorec, Juraj Papčo, Daniel R. Roman, Jordan Krcmaric, Miao Lin","doi":"10.1007/s00190-024-01922-6","DOIUrl":"https://doi.org/10.1007/s00190-024-01922-6","url":null,"abstract":"<p>Numerical methods, like the finite element method (FEM) or finite volume method (FVM), are widely used to provide solutions in many boundary value problems. In previous studies, these numerical methods have also been applied in geodesy but demanded extensive computations because the upper boundary condition was usually set up at the satellite orbit level, hundreds of kilometers above the Earth. The relatively large distances between the lower boundary of the Earth's surface and the upper boundary exacerbate the computation loads because of the required discretization in between. Considering that many areas, such as the US, have uniformly distributed airborne gravity data just a few kilometers above the topography, we adapt the upper boundary from the satellite orbit level to the mean flight level of the airborne gravimetry. The significant decrease in the domain of solution dramatically reduces the large computation demand for FEM or FVM. This paper demonstrates the advantages of using FVM in the decreased domain in simulated and actual field cases in study areas of interest. In the simulated case, the FVM numerical results show that precision improvement of about an order of magnitude can be obtained when moving the upper boundary from 250 to 10 km, the upper altitude of the GRAV-D flights. A 2–3 cm level of accurate quasi-geoid model can be obtained for the actual datasets depending on different schemes used to model the topographic mass. In flat areas, the FVM solution can reach to about 1 cm precision, which is comparable with the counterparts from classical methods. The paper also demonstrates how to find the upper boundary if no airborne data are available. Finally, the numerical method provides a 3D discrete representation of the entire local gravity field instead of a surface solution, a (quasi) geoid model.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"47 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1007/s00190-024-01927-1
Pengyu Hou, Baocheng Zhang
The Kalman filter stands as one of the most widely used methods for recursive parameter estimation. However, its standard formulation typically assumes that all state parameters avail initial values and dynamic models, an assumption that may not always hold true in certain applications, particularly in global navigation satellite system (GNSS) data processing. To address this issue, Teunissen et al. (2021) introduced a generalized Kalman filter that eliminates the need for initial values and allows linear functions of parameters to have dynamic models. This work proposes a least-squares approach to reformulate the generalized Kalman filter, enhancing its applicability to GNSS data processing when the parameter dimension varies with satellite visibility changes. The reformulated filter, named generalized least-squares filter, is equivalent to the generalized Kalman filter when all state parameters are recursively estimated. In this case, we demonstrate how both the generalized Kalman filter and the generalized least-squares filter adaptatively manage newly introduced or removed parameters. Specifically, when estimation is limited to parameters with dynamic models, the generalized least-squares filter extends the generalized Kalman filter by allowing the dimension of estimated parameters to vary over time. Moreover, we introduce a new element of least-squares smoothing, creating a comprehensive system for prediction, filtering, and smoothing. To verify, we conduct simulated kinematic and vehicle-borne kinematic GNSS positioning using the proposed generalized least-squares filter and compare the results with those from the standard Kalman filter. Our findings show that the generalized least-squares filter delivers better results, maintaining the positioning errors at the centimeter level, whereas the Kalman-filter-based positioning errors exceed several decimeters in some epochs due to improper initial values and dynamic models. Moreover, the normal equation reduction strategy employed in the generalized least-squares filter improves computational efficiency by 23% and 32% in simulated kinematic and vehicle-borne kinematic positioning, respectively. The generalized least-squares filter also allows for the flexible adjustment of smoothing window lengths, facilitating successful ambiguity resolution in several epochs. In conclusion, the proposed generalized least-squares filter offers flexibility for various GNSS data processing scenarios, ensuring both theoretical rigor and computational efficiency.
{"title":"A generalized least-squares filter designed for GNSS data processing","authors":"Pengyu Hou, Baocheng Zhang","doi":"10.1007/s00190-024-01927-1","DOIUrl":"https://doi.org/10.1007/s00190-024-01927-1","url":null,"abstract":"<p>The Kalman filter stands as one of the most widely used methods for recursive parameter estimation. However, its standard formulation typically assumes that all state parameters avail initial values and dynamic models, an assumption that may not always hold true in certain applications, particularly in global navigation satellite system (GNSS) data processing. To address this issue, Teunissen et al. (2021) introduced a generalized Kalman filter that eliminates the need for initial values and allows linear functions of parameters to have dynamic models. This work proposes a least-squares approach to reformulate the generalized Kalman filter, enhancing its applicability to GNSS data processing when the parameter dimension varies with satellite visibility changes. The reformulated filter, named generalized least-squares filter, is equivalent to the generalized Kalman filter when all state parameters are recursively estimated. In this case, we demonstrate how both the generalized Kalman filter and the generalized least-squares filter adaptatively manage newly introduced or removed parameters. Specifically, when estimation is limited to parameters with dynamic models, the generalized least-squares filter extends the generalized Kalman filter by allowing the dimension of estimated parameters to vary over time. Moreover, we introduce a new element of least-squares smoothing, creating a comprehensive system for prediction, filtering, and smoothing. To verify, we conduct simulated kinematic and vehicle-borne kinematic GNSS positioning using the proposed generalized least-squares filter and compare the results with those from the standard Kalman filter. Our findings show that the generalized least-squares filter delivers better results, maintaining the positioning errors at the centimeter level, whereas the Kalman-filter-based positioning errors exceed several decimeters in some epochs due to improper initial values and dynamic models. Moreover, the normal equation reduction strategy employed in the generalized least-squares filter improves computational efficiency by 23% and 32% in simulated kinematic and vehicle-borne kinematic positioning, respectively. The generalized least-squares filter also allows for the flexible adjustment of smoothing window lengths, facilitating successful ambiguity resolution in several epochs. In conclusion, the proposed generalized least-squares filter offers flexibility for various GNSS data processing scenarios, ensuring both theoretical rigor and computational efficiency.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"30 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1007/s00190-024-01921-7
Mohammad Bagherbandi, Lars E. Sjöberg
Vertical land motion and the redistribution of masses within and on the surface of the Earth affect the Earth’s gravity field. Hence, studying the ratio between temporal changes of the surface gravity (left( {dot{g}} right)) and height ((dot{h})) is important in geoscience, e.g., for reduction of gravity observations, assessing satellite gravimetry missions, and tuning vertical land motion models. Sjöberg and Bagherbandi (2020) estimated a combined ratio of (dot{g}/dot{h}) in Fennoscandia based on relative gravity observations along the 63 degree gravity line running from Vågstranda in Norway to Joensuu in Finland, 688 absolute gravity observations observed at 59 stations over Fennoscandia, monthly gravity data derived from the GRACE satellite mission between January 2003 and August 2016, as well as a land uplift model. The weighted least-squares solution of all these data was (dot{g}/dot{h}) = − 0.166 ± 0.011 μGal/mm, which corresponds to an upper mantle density of about 3402 ± 95 kg/m3. The present note includes additional GRACE data to June 2017 and GRACE Follow-on data from June 2018 to November 2023. The resulting weighted least-squares solution for all data is (dot{g}/dot{h}) = − 0.160 ± 0.011 μGal/mm, yielding an upper mantle density of about 3546 ± 71 kg/m3. The outcomes show the importance of satellite gravimetry data in Glacial Isostatic Adjustment (GIA) modeling and other parameters such as land uplift rate. Utilizing a longer time span of GRACE and GRACE Follow-on data allows us to capture fine variations and trends in the gravity-to-height ratio with better precision. This will be useful for constraining and adjusting GIA models and refining gravity observations.
{"title":"A short note on GIA related surface gravity versus height changes in Fennoscandia","authors":"Mohammad Bagherbandi, Lars E. Sjöberg","doi":"10.1007/s00190-024-01921-7","DOIUrl":"https://doi.org/10.1007/s00190-024-01921-7","url":null,"abstract":"<p>Vertical land motion and the redistribution of masses within and on the surface of the Earth affect the Earth’s gravity field. Hence, studying the ratio between temporal changes of the surface gravity <span>(left( {dot{g}} right))</span> and height (<span>(dot{h})</span>) is important in geoscience, e.g., for reduction of gravity observations, assessing satellite gravimetry missions, and tuning vertical land motion models. Sjöberg and Bagherbandi (2020) estimated a combined ratio of <span>(dot{g}/dot{h})</span> in Fennoscandia based on relative gravity observations along the 63 degree gravity line running from Vågstranda in Norway to Joensuu in Finland, 688 absolute gravity observations observed at 59 stations over Fennoscandia, monthly gravity data derived from the GRACE satellite mission between January 2003 and August 2016, as well as a land uplift model. The weighted least-squares solution of all these data was <span>(dot{g}/dot{h})</span> = − 0.166 ± 0.011 μGal/mm, which corresponds to an upper mantle density of about 3402 ± 95 kg/m<sup>3</sup>. The present note includes additional GRACE data to June 2017 and GRACE Follow-on data from June 2018 to November 2023. The resulting weighted least-squares solution for all data is <span>(dot{g}/dot{h})</span> = − 0.160 ± 0.011 μGal/mm, yielding an upper mantle density of about 3546 ± 71 kg/m<sup>3</sup>. The outcomes show the importance of satellite gravimetry data in Glacial Isostatic Adjustment (GIA) modeling and other parameters such as land uplift rate. Utilizing a longer time span of GRACE and GRACE Follow-on data allows us to capture fine variations and trends in the gravity-to-height ratio with better precision. This will be useful for constraining and adjusting GIA models and refining gravity observations.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"13 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1007/s00190-024-01925-3
K. Sośnica, F. Gałdyn, R. Zajdel, D. Strugarek, J. Najder, A. Nowak, M. Mikoś, T. Kur, J. Bosy, G. Bury
LARES-2 is a new geodetic satellite designed for high-accuracy satellite laser ranging. The orbit altitude of LARES-2 is similar to that of LAGEOS-1, whereas the inclination angle of 70° complements the LAGEOS-1 inclination of 110°; hence, both satellites form the butterfly configuration for the verification of the Lense–Thirring effect. Although the major objective of LARES-2 is testing general relativity, LARES-2 substantially contributes to geodesy in terms of the realization of terrestrial reference frames, recovery of the geocenter motion, pole coordinates, length-of-day, and low-degree gravity field coefficients. We analyze the first 1.5 years of LARES-2 data and test different empirical orbit models for LARES-2 with and without co-estimating low-degree gravity field coefficients to find the best combination strategy with LAGEOS satellites. We found that LARES-2 orbit determination is more accurate than that of LAGEOS-1/2 due to a different satellite construction consisting of a solid sphere with no inner structure. Neither the correction for D0 nor the empirical once-per-revolution along-track accelerations SC/SS have to be estimated for LARES-2 when co-estimating gravity field coefficients. The only empirical parameter needed for LARES-2 is the constant along-track acceleration S0 to compensate for the Yarkovsky–Schach effect. On the contrary, for LAGEOS-1/2, the non-gravitational perturbations affect C30 and Z geocenter estimates when once-per-revolution parameters are not estimated. LARES-2 does not face this issue. LARES-2 improves the formal errors of the Z geocenter component by up to 59% and C20 by up to 40% compared to the combined LAGEOS-1/2 solutions and provides C30 estimates unaffected by thermal orbit modeling issues.
{"title":"LARES-2 contribution to global geodetic parameters from the combined LAGEOS-LARES solutions","authors":"K. Sośnica, F. Gałdyn, R. Zajdel, D. Strugarek, J. Najder, A. Nowak, M. Mikoś, T. Kur, J. Bosy, G. Bury","doi":"10.1007/s00190-024-01925-3","DOIUrl":"https://doi.org/10.1007/s00190-024-01925-3","url":null,"abstract":"<p>LARES-2 is a new geodetic satellite designed for high-accuracy satellite laser ranging. The orbit altitude of LARES-2 is similar to that of LAGEOS-1, whereas the inclination angle of 70° complements the LAGEOS-1 inclination of 110°; hence, both satellites form the butterfly configuration for the verification of the Lense–Thirring effect. Although the major objective of LARES-2 is testing general relativity, LARES-2 substantially contributes to geodesy in terms of the realization of terrestrial reference frames, recovery of the geocenter motion, pole coordinates, length-of-day, and low-degree gravity field coefficients. We analyze the first 1.5 years of LARES-2 data and test different empirical orbit models for LARES-2 with and without co-estimating low-degree gravity field coefficients to find the best combination strategy with LAGEOS satellites. We found that LARES-2 orbit determination is more accurate than that of LAGEOS-1/2 due to a different satellite construction consisting of a solid sphere with no inner structure. Neither the correction for <i>D</i><sub>0</sub> nor the empirical once-per-revolution along-track accelerations <i>S</i><sub>C</sub>/<i>S</i><sub>S</sub> have to be estimated for LARES-2 when co-estimating gravity field coefficients. The only empirical parameter needed for LARES-2 is the constant along-track acceleration <i>S</i><sub>0</sub> to compensate for the Yarkovsky–Schach effect. On the contrary, for LAGEOS-1/2, the non-gravitational perturbations affect <i>C</i><sub>30</sub> and <i>Z</i> geocenter estimates when once-per-revolution parameters are not estimated. LARES-2 does not face this issue. LARES-2 improves the formal errors of the <i>Z</i> geocenter component by up to 59% and <i>C</i><sub>20</sub> by up to 40% compared to the combined LAGEOS-1/2 solutions and provides <i>C</i><sub>30</sub> estimates unaffected by thermal orbit modeling issues.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"88 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-07DOI: 10.1007/s00190-024-01924-4
Xinghan Chen, Maorong Ge, Benjamin Männel, Urs Hugentobler, Harald Schuh
For precise orbit determination (POD) and precise applications with POD products, one of the critical issues is the modeling of non-conservative forces acting on satellites. Since the official publication of Galileo satellite metadata in 2017, analytical models including the box-wing model and thermal thrust models have been established to absorb a substantial amount of solar radiation pressure (SRP) and thermal thrust. These models serve as the foundation for the best overall modeling approach, combining the analytical box-wing model and thermal thrust model with parameterization of the remaining non-conservative perturbing forces using various optimized Empirical CODE Orbit Models (ECOMs) of the Center for Orbit Determination in Europe (CODE). Firstly, we have demonstrated the significance of the second-order signals in the D direction and the first-order signals in the B direction through spectral analyses of the pure box-wing model, which are consistent with the currently recommended 7-parameter Empirical CODE Orbit Model 2 (ECOM2). In spite of this, we still found that degradation in orbit accuracy frequently occurs during deep eclipse seasons when using the ECOM2 model. We confirm a high-frequency signal existing in the fluctuating orbit overlap differences through the spectral analysis. Considering this, the ECOM2 force model should be extended to higher order and adapted to absorb the remaining effects of potential perturbing forces. After extending the ECOM2 force model to the sixth order in the Sun direction, we demonstrated the significance of fourth- and sixth-order sine terms for deep eclipses. Due to the higher-order periodic terms, the averaged RMS values of orbit overlap difference over deep eclipses can be reduced from 5.3, 10.8, and 23.8 cm to 3.2, 3.9, and 9.9 cm for in-orbit validation (IOV) satellites, from 5.0, 8.6, and 17.7 cm to 3.0, 3.0, and 7.1 cm for the first generation of full operational capability (FOC-1) satellites, and from 5.4, 8.6, and 19.0 cm to 3.6, 3.6, and 7.4 cm for the second generation of FOC (FOC-2) satellites, in the radial, cross-track, and along-track directions, respectively. Fluctuations with a peak amplitude of approximately 0.4 nm/s2 in the bias in the solar panel axis (Y) direction (Y-bias) are effectively mitigated by the higher-order terms. Due to the higher-order terms, the vertical positioning errors during kinematic precise point positioning (PPP) convergence can be improved from 42.3 to 37.1 cm at the 95.5% confidence level. Meanwhile, a low correlation level of up to 0.02 is found between the newly introduced higher-order parameters and earth rotation parameters (ERPs).
{"title":"Extending higher-order model for non-conservative perturbing forces acting on Galileo satellites during eclipse periods","authors":"Xinghan Chen, Maorong Ge, Benjamin Männel, Urs Hugentobler, Harald Schuh","doi":"10.1007/s00190-024-01924-4","DOIUrl":"https://doi.org/10.1007/s00190-024-01924-4","url":null,"abstract":"<p>For precise orbit determination (POD) and precise applications with POD products, one of the critical issues is the modeling of non-conservative forces acting on satellites. Since the official publication of Galileo satellite metadata in 2017, analytical models including the box-wing model and thermal thrust models have been established to absorb a substantial amount of solar radiation pressure (SRP) and thermal thrust. These models serve as the foundation for the best overall modeling approach, combining the analytical box-wing model and thermal thrust model with parameterization of the remaining non-conservative perturbing forces using various optimized Empirical CODE Orbit Models (ECOMs) of the Center for Orbit Determination in Europe (CODE). Firstly, we have demonstrated the significance of the second-order signals in the D direction and the first-order signals in the B direction through spectral analyses of the pure box-wing model, which are consistent with the currently recommended 7-parameter Empirical CODE Orbit Model 2 (ECOM2). In spite of this, we still found that degradation in orbit accuracy frequently occurs during deep eclipse seasons when using the ECOM2 model. We confirm a high-frequency signal existing in the fluctuating orbit overlap differences through the spectral analysis. Considering this, the ECOM2 force model should be extended to higher order and adapted to absorb the remaining effects of potential perturbing forces. After extending the ECOM2 force model to the sixth order in the Sun direction, we demonstrated the significance of fourth- and sixth-order sine terms for deep eclipses. Due to the higher-order periodic terms, the averaged RMS values of orbit overlap difference over deep eclipses can be reduced from 5.3, 10.8, and 23.8 cm to 3.2, 3.9, and 9.9 cm for in-orbit validation (IOV) satellites, from 5.0, 8.6, and 17.7 cm to 3.0, 3.0, and 7.1 cm for the first generation of full operational capability (FOC-1) satellites, and from 5.4, 8.6, and 19.0 cm to 3.6, 3.6, and 7.4 cm for the second generation of FOC (FOC-2) satellites, in the radial, cross-track, and along-track directions, respectively. Fluctuations with a peak amplitude of approximately 0.4 nm/s<sup>2</sup> in the bias in the solar panel axis (Y) direction (Y-bias) are effectively mitigated by the higher-order terms. Due to the higher-order terms, the vertical positioning errors during kinematic precise point positioning (PPP) convergence can be improved from 42.3 to 37.1 cm at the 95.5% confidence level. Meanwhile, a low correlation level of up to 0.02 is found between the newly introduced higher-order parameters and earth rotation parameters (ERPs).</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"9 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}