首页 > 最新文献

Journal of Geodesy最新文献

英文 中文
Modified Bayesian method for simultaneously imaging fault geometry and slip distribution with reduced uncertainty, applied to 2017 Mw 7.3 Sarpol-e Zahab (Iran) earthquake 修正的贝叶斯方法同时成像断层几何和滑移分布,减少不确定性,应用于 2017 年伊朗 Sarpol-e Zahab 7.3 级地震
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-21 DOI: 10.1007/s00190-024-01906-6
Xiong Zhao, Lixuan Zhou, Caijun Xu, Guoyan Jiang, Wanpeng Feng, Yangmao Wen, Nan Fang

Inverting fault geometry and slip distribution simultaneously with geodetic observations based on Bayesian theory is becoming increasingly prevalent. A widely used approach, proposed by (Fukuda and Johnson, Geophys J Int 181:1441–1458, 2010) (F-J method), employs the least-squares method to solve the linear parameters of slip distribution after sampling the nonlinear parameters, including fault geometry, data weights and smoothing factor. Here, we present a modified version of the F-J method (MF-J method), which treats data weights and the smoothing factor as hyperparameters not directly linked to surface deformation. Additionally, we introduce the variance component estimation (VCE) method to resolve these hyperparameters. To validate the effectiveness of the MF-J method, we conducted inversion tests using both synthetic data and a real earthquake case. In our comparison of the MF-J and F-J methods using synthetic experiments, we found that the F-J method's inversion results for fault geometry were highly sensitive to the initial values and step sizes of hyperparameters, whereas the MF-J method exhibited greater robustness and stability. The MF-J method also exhibited a higher and more stable acceptance rate, enabling convergence to simulated values and ensuring greater accuracy of the parameter estimation. Furthermore, treating the fault length and width as unknown parameters and solving them simultaneously with other fault geometry parameters and hyperparameters using the MF-J method successfully resolved the issue of non-uniqueness in fault location solutions caused by the excessively large no-slip areas. In the 2017 Mw 7.3 Sarpol-e Zahab earthquake case study, the MF-J method produced a fault slip distribution with low uncertainty that accurately fit surface observation data, aligning with results from other research institutions. This validated the method's applicability and robustness in real-world scenarios. Additionally, we inferred that the second slip asperity was caused by early afterslip.

以贝叶斯理论为基础,利用大地测量观测同时反演断层几何和滑移分布的方法越来越普遍。Fukuda and Johnson, Geophys J Int 181:1441-1458, 2010)提出的一种广泛使用的方法(F-J 法),在对非线性参数(包括断层几何、数据权重和平滑因子)进行采样后,采用最小二乘法求解滑移分布的线性参数。在此,我们提出了 F-J 方法的改进版(MF-J 方法),将数据权重和平滑因子视为与地表变形无直接联系的超参数。此外,我们还引入了方差分量估计(VCE)方法来解决这些超参数问题。为了验证 MF-J 方法的有效性,我们使用合成数据和真实地震案例进行了反演测试。在使用合成实验对 MF-J 和 F-J 方法进行比较时,我们发现 F-J 方法的断层几何反演结果对超参数的初始值和步长非常敏感,而 MF-J 方法则表现出更高的鲁棒性和稳定性。MF-J 方法还表现出更高和更稳定的接受率,能够收敛到模拟值,确保参数估计的更高精度。此外,将断层长度和宽度作为未知参数处理,并与其他断层几何参数和超参数同时求解,使用 MF-J 方法成功地解决了因无滑动区域过大而导致的断层定位解的非唯一性问题。在 2017 年 Mw 7.3 Sarpol-e Zahab 地震案例研究中,MF-J 方法得出了不确定性较低的断层滑动分布,与地表观测数据准确吻合,与其他研究机构的结果一致。这验证了该方法在实际场景中的适用性和稳健性。此外,我们还推断出第二个滑动凸起是由早期后滑引起的。
{"title":"Modified Bayesian method for simultaneously imaging fault geometry and slip distribution with reduced uncertainty, applied to 2017 Mw 7.3 Sarpol-e Zahab (Iran) earthquake","authors":"Xiong Zhao, Lixuan Zhou, Caijun Xu, Guoyan Jiang, Wanpeng Feng, Yangmao Wen, Nan Fang","doi":"10.1007/s00190-024-01906-6","DOIUrl":"https://doi.org/10.1007/s00190-024-01906-6","url":null,"abstract":"<p>Inverting fault geometry and slip distribution simultaneously with geodetic observations based on Bayesian theory is becoming increasingly prevalent. A widely used approach, proposed by (Fukuda and Johnson, Geophys J Int 181:1441–1458, 2010) (F-J method), employs the least-squares method to solve the linear parameters of slip distribution after sampling the nonlinear parameters, including fault geometry, data weights and smoothing factor. Here, we present a modified version of the F-J method (MF-J method), which treats data weights and the smoothing factor as hyperparameters not directly linked to surface deformation. Additionally, we introduce the variance component estimation (VCE) method to resolve these hyperparameters. To validate the effectiveness of the MF-J method, we conducted inversion tests using both synthetic data and a real earthquake case. In our comparison of the MF-J and F-J methods using synthetic experiments, we found that the F-J method's inversion results for fault geometry were highly sensitive to the initial values and step sizes of hyperparameters, whereas the MF-J method exhibited greater robustness and stability. The MF-J method also exhibited a higher and more stable acceptance rate, enabling convergence to simulated values and ensuring greater accuracy of the parameter estimation. Furthermore, treating the fault length and width as unknown parameters and solving them simultaneously with other fault geometry parameters and hyperparameters using the MF-J method successfully resolved the issue of non-uniqueness in fault location solutions caused by the excessively large no-slip areas. In the 2017 Mw 7.3 Sarpol-e Zahab earthquake case study, the MF-J method produced a fault slip distribution with low uncertainty that accurately fit surface observation data, aligning with results from other research institutions. This validated the method's applicability and robustness in real-world scenarios. Additionally, we inferred that the second slip asperity was caused by early afterslip.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"129 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spherical radial basis functions model: approximating an integral functional of an isotropic Gaussian random field 球面径向基函数模型:近似各向同性高斯随机场的积分函数
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-15 DOI: 10.1007/s00190-024-01910-w
Guobin Chang, Xun Zhang, Haipeng Yu

The spherical radial basis function (SRBF) approach, widely used in gravity modeling, is theoretically surveyed from a viewpoint of random field theory. Let the gravity potential be a random field which is represented as an integral functional of another random field, namely an isotropic Gaussian random field (IGRF) on a sphere inside the Bjerhammar sphere with the SRBF as the integral kernel. When the integration is approximated by a discrete sum within a local region, one gets the widely applicable SRBF model. With this theoretical study, the following two findings are made. First, the IGRF implies a Gaussian prior on the spherical harmonic coefficients (SHCs) of the gravity potential; for this prior the SHCs are independent with each other and their variances are degree-only dependent. This should be reminiscent of two well-known priors, namely the power-law Kaula’s rule and the asymptotic power-law Tscherning-Rapp model. Second, the IGRF-SRBF representation is non-unique. Benefiting from this redundant representation, one can employ a simple IGRF, e.g., the simplest white field, and then design the SRBF accordingly to represent a potential with desired prior statistical properties. This can simplify the corresponding SRBF modeling significantly; to be more specific, the regularization matrix in parameter estimation of the SRBF modeling can be chosen to be a diagonal matrix, or even the naïve identity matrix.

从随机场理论的角度对广泛应用于重力建模的球面径向基函数(SRBF)方法进行了理论研究。假设重力势能是一个随机场,它被表示为另一个随机场的积分函数,即比约哈马球内球面上的各向同性高斯随机场(IGRF),以 SRBF 为积分核。当积分被近似为局部区域内的离散和时,就得到了广泛应用的 SRBF 模型。通过这项理论研究,我们得出了以下两个结论。首先,IGRF 意味着重力势能的球谐波系数(SHCs)有一个高斯先验;对于这个先验,SHCs 是相互独立的,它们的方差只依赖于度。这应该会让人想起两个著名的先验,即幂律考拉规则和渐近幂律齐尔宁-拉普模型。其次,IGRF-SRBF 表示是非唯一的。利用这种冗余表示,我们可以采用简单的 IGRF,例如最简单的白场,然后相应地设计 SRBF,以表示具有所需先验统计特性的电势。这可以大大简化相应的 SRBF 建模;更具体地说,SRBF 建模参数估计中的正则化矩阵可以选择对角矩阵,甚至是天真的同矩阵。
{"title":"Spherical radial basis functions model: approximating an integral functional of an isotropic Gaussian random field","authors":"Guobin Chang, Xun Zhang, Haipeng Yu","doi":"10.1007/s00190-024-01910-w","DOIUrl":"https://doi.org/10.1007/s00190-024-01910-w","url":null,"abstract":"<p>The spherical radial basis function (SRBF) approach, widely used in gravity modeling, is theoretically surveyed from a viewpoint of random field theory. Let the gravity potential be a random field which is represented as an integral functional of another random field, namely an isotropic Gaussian random field (IGRF) on a sphere inside the Bjerhammar sphere with the SRBF as the integral kernel. When the integration is approximated by a discrete sum within a local region, one gets the widely applicable SRBF model. With this theoretical study, the following two findings are made. First, the IGRF implies a Gaussian prior on the spherical harmonic coefficients (SHCs) of the gravity potential; for this prior the SHCs are independent with each other and their variances are degree-only dependent. This should be reminiscent of two well-known priors, namely the power-law Kaula’s rule and the asymptotic power-law Tscherning-Rapp model. Second, the IGRF-SRBF representation is non-unique. Benefiting from this redundant representation, one can employ a simple IGRF, e.g., the simplest white field, and then design the SRBF accordingly to represent a potential with desired prior statistical properties. This can simplify the corresponding SRBF modeling significantly; to be more specific, the regularization matrix in parameter estimation of the SRBF modeling can be chosen to be a diagonal matrix, or even the naïve identity matrix.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"247 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global 3D ionospheric shape function modeling with kriging 利用克里格法进行全球三维电离层形状函数建模
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-15 DOI: 10.1007/s00190-024-01908-4
Haixia Lyu, Manuel Hernández-Pajares, Min Li, Enric Monte-Moreno, Fabricio S. Prol, Hongping Zhang, Chenlong Deng, Jingnan Liu

The 3D ionosphere structure is of interest in many fields such as radio frequency communication and global navigation satellite system (GNSS) applications. However, the limited temporal and spatial coverage of measurements poses a challenge for 3D electron density modeling. To overcome this challenge, we explore the use of kriging interpolation technique. The kriging interpolation is performed to obtain 3D representation of the ionosphere over electron density measurements retrieved by GNSS radio-occultation (RO) data. RO measurements are first reduced to “shape function,” the ratio of electron density to vertical total electron content (VTEC), aiming to create a background model. Then, the empirical residual semivariogram is analyzed for variation characteristics of the shape functions under different solar geomagnetic conditions. Finally, 3D kriging is adopted for shape function interpolation. Compared to the modeling results without kriging, the maximum root mean square error (RMSE) reduction reaches (3.4times {10}^{-4}~text {km}^{-1}), which amounts to (3.4times {10}^{11}~text {el/m}^{3}) of electron density when VTEC is assumed as 100 TECU. This improvement accounts for 17.8% of root mean square (RMS) of shape function.

三维电离层结构在射频通信和全球导航卫星系统(GNSS)应用等许多领域都很有意义。然而,测量的时间和空间覆盖范围有限,给三维电子密度建模带来了挑战。为了克服这一挑战,我们探索使用克里金插值技术。通过克里金插值技术,可以在全球导航卫星系统无线电占星(RO)数据获取的电子密度测量值上获得电离层的三维表示。RO 测量值首先被简化为 "形状函数",即电子密度与垂直电子总含量(VTEC)之比,目的是创建一个背景模型。然后,利用经验残差半变量图分析形状函数在不同太阳地磁条件下的变化特征。最后,采用三维克里金法进行形状函数插值。与不采用克里格法的建模结果相比,当假定VTEC为100 TECU时,电子密度的最大均方根误差(RMSE)降低了(3.4倍{10}^{-4}~text {km}^{-1}}),相当于(3.4倍{10}^{11}~text {el/m}^{3})。这一改进占形状函数均方根(RMS)的 17.8%。
{"title":"Global 3D ionospheric shape function modeling with kriging","authors":"Haixia Lyu, Manuel Hernández-Pajares, Min Li, Enric Monte-Moreno, Fabricio S. Prol, Hongping Zhang, Chenlong Deng, Jingnan Liu","doi":"10.1007/s00190-024-01908-4","DOIUrl":"https://doi.org/10.1007/s00190-024-01908-4","url":null,"abstract":"<p>The 3D ionosphere structure is of interest in many fields such as radio frequency communication and global navigation satellite system (GNSS) applications. However, the limited temporal and spatial coverage of measurements poses a challenge for 3D electron density modeling. To overcome this challenge, we explore the use of kriging interpolation technique. The kriging interpolation is performed to obtain 3D representation of the ionosphere over electron density measurements retrieved by GNSS radio-occultation (RO) data. RO measurements are first reduced to “shape function,” the ratio of electron density to vertical total electron content (VTEC), aiming to create a background model. Then, the empirical residual semivariogram is analyzed for variation characteristics of the shape functions under different solar geomagnetic conditions. Finally, 3D kriging is adopted for shape function interpolation. Compared to the modeling results without kriging, the maximum root mean square error (RMSE) reduction reaches <span>(3.4times {10}^{-4}~text {km}^{-1})</span>, which amounts to <span>(3.4times {10}^{11}~text {el/m}^{3})</span> of electron density when VTEC is assumed as 100 TECU. This improvement accounts for 17.8% of root mean square (RMS) of shape function.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"128 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capture of coseismic velocity waveform using GNSS raw Doppler and carrier phase data for enhancing shaking intensity estimation 利用全球导航卫星系统的原始多普勒和载波相位数据捕捉共震速度波形,以加强地震烈度估算
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-14 DOI: 10.1007/s00190-024-01916-4
Jiawei Zheng, Rongxin Fang, Min Li, Qile Zhao, Chuang Shi, Jingnan Liu

In recent years, coseismic velocity from high-rate global navigation satellite systems (GNSS) carrier phase data has been widely utilized to estimate instrumental seismic intensity, thereby guiding earthquake early warning and emergency response. However, using carrier phase data only yields displacement, displacement increment, and average velocity but not instantaneous velocity at the epoch level. In large earthquakes, using average velocity over a brief time span (e.g., 1 s) to quantify instantaneous coseismic velocity is less reliable for recovering accurate deformation dynamics, especially for the near-field region. In this study, we first introduce GNSS raw Doppler-based instantaneous velocity into seismology, expanding carrier phase-based traditional GNSS seismology. We also propose a new integrated GNSS velocity estimation method that employs a Kalman filter to integrate raw Doppler-based instantaneous velocity and carrier phase-based average velocity. The GNSS data from shake table experiments and two real-world earthquake events (i.e., the 2016 Mw 6.6 Norcia earthquake and the 2011 Mw 9.1 Tohoku-oki earthquake) are used to investigate the impact of high-rate GNSS raw Doppler on capturing coseismic velocity waveforms and predicting instrumental seismic intensity. The simulated sine wave experiment results indicate that the accuracy of instantaneous and average velocity for the 1 Hz sampling rate case is 1.20 cm/s and 12.67 cm/s, respectively. A similar case holds for the simulated quake wave experiment. The retrospective analysis of the ultra-high-rate (20 Hz) GNSS data for the Norcia earthquake shows the average velocities exhibit more aliasing and have a smaller peak ground velocity value than instantaneous velocities in all cases (i.e., 1, 2, 4, 5, 10, and 20 Hz). For the 2011 Mw 9.1 Tohoku-oki earthquake, results show that incorporating raw Doppler data enhances the consistency between the GNSS intensity map and the United States Geological Survey intensity map for near-field regions. Therefore, high-rate GNSS RD data as it becomes more widely available should be incorporated into data processing of high-rate GNSS seismology to capture more accurate instantaneous coseismic velocity waveforms and predict more realistic instrumental seismic intensity in future analyses.

近年来,从高速率全球导航卫星系统(GNSS)载波相位数据中获得的共震速度被广泛用于估算工具地震烈度,从而指导地震预警和应急响应。然而,使用载波相位数据只能获得位移、位移增量和平均速度,而不能获得纪元级的瞬时速度。在大地震中,使用短暂时间跨度(如 1 秒)内的平均速度来量化瞬时共震速度,对于恢复精确的形变动力学,尤其是近场区域的形变动力学,可靠性较低。在本研究中,我们首先将基于多普勒的全球导航卫星系统原始瞬时速度引入地震学,扩展了基于载波相位的传统全球导航卫星系统地震学。我们还提出了一种新的集成 GNSS 速度估算方法,该方法采用卡尔曼滤波器来集成基于原始多普勒的瞬时速度和基于载波相位的平均速度。我们利用振动台实验和两个真实世界地震事件(即 2016 年 Mw 6.6 Norcia 地震和 2011 年 Mw 9.1 Tohoku-oki 地震)的 GNSS 数据,研究了高速率 GNSS 原始多普勒对捕捉共震速度波形和预测仪器地震烈度的影响。模拟正弦波实验结果表明,在采样率为 1 赫兹的情况下,瞬时速度和平均速度的精度分别为 1.20 厘米/秒和 12.67 厘米/秒。模拟地震波实验也有类似情况。对诺西亚地震的超高速率(20 赫兹)GNSS 数据进行的回顾分析表明,在所有情况下(即 1、2、4、5、10 和 20 赫兹),平均速度比瞬时速度表现出更多的混叠现象,且地表速度峰值更小。对于 2011 年发生的 Mw 9.1 东北大地震,结果表明,在近场区域,采用原始多普勒数据可提高全球导航卫星系统烈度图与美国地质调查局烈度图之间的一致性。因此,随着高速率全球导航卫星系统 RD 数据的普及,应将其纳入高速率全球导航卫星系统地震学的数据处理中,以捕捉更准确的瞬时共震速度波形,并在未来的分析中预测更真实的仪器地震烈度。
{"title":"Capture of coseismic velocity waveform using GNSS raw Doppler and carrier phase data for enhancing shaking intensity estimation","authors":"Jiawei Zheng, Rongxin Fang, Min Li, Qile Zhao, Chuang Shi, Jingnan Liu","doi":"10.1007/s00190-024-01916-4","DOIUrl":"https://doi.org/10.1007/s00190-024-01916-4","url":null,"abstract":"<p>In recent years, coseismic velocity from high-rate global navigation satellite systems (GNSS) carrier phase data has been widely utilized to estimate instrumental seismic intensity, thereby guiding earthquake early warning and emergency response. However, using carrier phase data only yields displacement, displacement increment, and average velocity but not instantaneous velocity at the epoch level. In large earthquakes, using average velocity over a brief time span (e.g., 1 s) to quantify instantaneous coseismic velocity is less reliable for recovering accurate deformation dynamics, especially for the near-field region. In this study, we first introduce GNSS raw Doppler-based instantaneous velocity into seismology, expanding carrier phase-based traditional GNSS seismology. We also propose a new integrated GNSS velocity estimation method that employs a Kalman filter to integrate raw Doppler-based instantaneous velocity and carrier phase-based average velocity. The GNSS data from shake table experiments and two real-world earthquake events (i.e., the 2016 Mw 6.6 Norcia earthquake and the 2011 Mw 9.1 Tohoku-oki earthquake) are used to investigate the impact of high-rate GNSS raw Doppler on capturing coseismic velocity waveforms and predicting instrumental seismic intensity. The simulated sine wave experiment results indicate that the accuracy of instantaneous and average velocity for the 1 Hz sampling rate case is 1.20 cm/s and 12.67 cm/s, respectively. A similar case holds for the simulated quake wave experiment. The retrospective analysis of the ultra-high-rate (20 Hz) GNSS data for the Norcia earthquake shows the average velocities exhibit more aliasing and have a smaller peak ground velocity value than instantaneous velocities in all cases (i.e., 1, 2, 4, 5, 10, and 20 Hz). For the 2011 Mw 9.1 Tohoku-oki earthquake, results show that incorporating raw Doppler data enhances the consistency between the GNSS intensity map and the United States Geological Survey intensity map for near-field regions. Therefore, high-rate GNSS RD data as it becomes more widely available should be incorporated into data processing of high-rate GNSS seismology to capture more accurate instantaneous coseismic velocity waveforms and predict more realistic instrumental seismic intensity in future analyses.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"246 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
INTOMO operator for GNSS multi-source tomography based on 3D ray tracing technique 基于 3D 射线跟踪技术的 INTOMO 运算器,用于 GNSS 多源层析成像
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-13 DOI: 10.1007/s00190-024-01915-5
Adam Cegla, Gregor Moeller, Pawel Hordyniec, Witold Rohm

The current GNSS meteorology literature focuses on ground-based and space-based GNSS observations separately, without exploring potential synergies. In this study, we propose combining the two data sources using GNSS tomography to overcome current limitations in (1) horizontal resolution of GNSS space-based, (2) low vertical resolution of GNSS ground-based tropospheric retrievals when the number of GNSS ground-based observations is limited and (3) instability of the tomography system due to a lack of observations traversing the atmosphere horizontally. Our study on the combination of GNSS ground-based and space-based presents an innovative way for data integration based on uncertainty estimation. The developed integrated tomography operator, based on 3D ray tracing principles, is tested on 30 days of simulated data with 101 ground stations and over 240 radio occultation events, using three different station layouts. The a priori data introduced into the tomography processing is from a deterministic model, while ray tracing uses the ERA5 reanalysis wet refractivity field to obtain input data for individual test cases. The results are verified by comparing tomography output to ERA5 reanalysis. We observed a decrease in tomography RMSE between 2% and 16% in the case of an integrated solution, depending on GNSS station layout and the number and geometry of radio occultation ray paths. We show that a single RO event during one processing epoch can shift the wet refractivity estimates by 2 to 5 ppm closer to the correct solution compared to ground-based-only GNSS tomography.

目前的全球导航卫星系统气象学文献侧重于分别进行地基和天基全球导航卫星系统观测,而没有探讨潜在的协同作用。在本研究中,我们建议利用全球导航卫星系统层析技术将这两种数据源结合起来,以克服目前在以下方面的局限性:(1)全球导航卫星系统天基的水平分辨率;(2)当全球导航卫星系统地基观测数据数量有限时,全球导航卫星系统地基对流层检索的垂直分辨率较低;(3)由于缺乏横穿大气层的观测数据,层析系统不稳定。我们对全球导航卫星系统地基和天基相结合的研究提出了一种基于不确定性估计的创新数据整合方法。根据三维射线追踪原理开发的综合层析成像算子在 30 天的模拟数据中进行了测试,这些数据包括 101 个地面站和 240 多个无线电掩星事件,使用了三种不同的站点布局。引入层析成像处理的先验数据来自一个确定性模型,而射线追踪则使用ERA5再分析湿折射率场来获取单个测试用例的输入数据。通过将层析成像输出结果与ERA5再分析结果进行比较,对结果进行了验证。我们观察到,根据全球导航卫星系统台站布局以及无线电掩星射线路径的数量和几何形状,在采用综合解决方案的情况下,层析 RMSE 降低了 2% 到 16%。我们表明,与仅基于地面的全球导航卫星系统层析成像相比,在一个处理历元期间发生的单个射电掩星事件可使湿折射率估计值偏移 2 到 5 ppm,更接近正确的解决方案。
{"title":"INTOMO operator for GNSS multi-source tomography based on 3D ray tracing technique","authors":"Adam Cegla, Gregor Moeller, Pawel Hordyniec, Witold Rohm","doi":"10.1007/s00190-024-01915-5","DOIUrl":"https://doi.org/10.1007/s00190-024-01915-5","url":null,"abstract":"<p>The current GNSS meteorology literature focuses on ground-based and space-based GNSS observations separately, without exploring potential synergies. In this study, we propose combining the two data sources using GNSS tomography to overcome current limitations in (1) horizontal resolution of GNSS space-based, (2) low vertical resolution of GNSS ground-based tropospheric retrievals when the number of GNSS ground-based observations is limited and (3) instability of the tomography system due to a lack of observations traversing the atmosphere horizontally. Our study on the combination of GNSS ground-based and space-based presents an innovative way for data integration based on uncertainty estimation. The developed integrated tomography operator, based on 3D ray tracing principles, is tested on 30 days of simulated data with 101 ground stations and over 240 radio occultation events, using three different station layouts. The a priori data introduced into the tomography processing is from a deterministic model, while ray tracing uses the ERA5 reanalysis wet refractivity field to obtain input data for individual test cases. The results are verified by comparing tomography output to ERA5 reanalysis. We observed a decrease in tomography RMSE between 2% and 16% in the case of an integrated solution, depending on GNSS station layout and the number and geometry of radio occultation ray paths. We show that a single RO event during one processing epoch can shift the wet refractivity estimates by 2 to 5 ppm closer to the correct solution compared to ground-based-only GNSS tomography.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"245 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivation of the Sagnac (Earth-rotation) correction and analysis of its accuracy for GNSS applications 推导萨格纳克(地球自转)校正并分析其在全球导航卫星系统应用中的精度
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-13 DOI: 10.1007/s00190-024-01914-6
Wang Hu, Jay A. Farrell

Global Navigation Satellite Systems (GNSS) applications require computation of the geometric range between the satellite vehicle at the time-of-signal transmission and the receiver antenna location at the time-of-signal reception. This computation requires attention to the frames of reference due to the rotation of the Earth-Centered Earth-Fixed (ECEF) frame during the time-of-signal propagation. Three range computation approaches are commonplace and will be discussed herein. The first is the Global Positioning System Interface Control Document recommendation to rotate the ECEF frames to a common reference time. The other two are forms of the Sagnac correction. The Sagnac derivations already in the literature are either limited to stationary receivers or lack the connection between the Earth-centered inertial (ECI) and ECEF frames. Neither form of the Sagnac correction exactly reproduces the geometric range. They are approximations. The literature does not currently contain an analysis of the error involved in using either form of the Sagnac correction. This article makes two contributions: (1) it presents derivations for both forms of the Sagnac correction that are valid for moving receivers and that maintain the connection between the ECI and ECEF frames; and (2) it analyzes the error of the Sagnac correction for orbits of different radius. The analysis shows that Sagnac corrections introduce range errors less than (7.57times 10^{-4}) meters for GNSS satellites at medium Earth orbit.

全球导航卫星系统(GNSS)应用需要计算信号发射时卫星飞行器与信号接收时接收器天线位置之间的几何距离。这种计算需要注意参考框架,因为在信号传播时间内,以地球为中心的地球固定框架(ECEF)会发生旋转。本文将讨论三种常见的测距计算方法。第一种是全球定位系统接口控制文件建议的将 ECEF 框架旋转到一个共同的参考时间。另外两种是萨格纳克校正的形式。文献中已有的萨格纳克推导要么仅限于静止接收机,要么缺乏地心惯性(ECI)和ECEF帧之间的联系。两种形式的萨格纳克校正都不能完全再现几何范围。它们都是近似值。目前还没有文献对使用这两种形式的萨格纳克校正所涉及的误差进行分析。本文有两个贡献:(1) 提出了两种形式的萨格纳克校正推导,对移动接收器有效,并保持了 ECI 和 ECEF 框架之间的联系;(2) 分析了不同半径轨道的萨格纳克校正误差。分析表明,对于中地球轨道上的全球导航卫星系统卫星,萨格纳克校正带来的距离误差小于(7.57乘以10^{-4})米。
{"title":"Derivation of the Sagnac (Earth-rotation) correction and analysis of its accuracy for GNSS applications","authors":"Wang Hu, Jay A. Farrell","doi":"10.1007/s00190-024-01914-6","DOIUrl":"https://doi.org/10.1007/s00190-024-01914-6","url":null,"abstract":"<p>Global Navigation Satellite Systems (GNSS) applications require computation of the geometric range between the satellite vehicle at the time-of-signal transmission and the receiver antenna location at the time-of-signal reception. This computation requires attention to the frames of reference due to the rotation of the Earth-Centered Earth-Fixed (ECEF) frame during the time-of-signal propagation. Three range computation approaches are commonplace and will be discussed herein. The first is the Global Positioning System Interface Control Document recommendation to rotate the ECEF frames to a common reference time. The other two are forms of the Sagnac correction. The Sagnac derivations already in the literature are either limited to stationary receivers or lack the connection between the Earth-centered inertial (ECI) and ECEF frames. Neither form of the Sagnac correction exactly reproduces the geometric range. They are approximations. The literature does not currently contain an analysis of the error involved in using either form of the Sagnac correction. This article makes two contributions: (1) it presents derivations for both forms of the Sagnac correction that are valid for moving receivers and that maintain the connection between the ECI and ECEF frames; and (2) it analyzes the error of the Sagnac correction for orbits of different radius. The analysis shows that Sagnac corrections introduce range errors less than <span>(7.57times 10^{-4})</span> meters for GNSS satellites at medium Earth orbit.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"34 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IAG Newsletter 国际咨询组通讯
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-08 DOI: 10.1007/s00190-024-01909-3
Gyula Tóth
{"title":"IAG Newsletter","authors":"Gyula Tóth","doi":"10.1007/s00190-024-01909-3","DOIUrl":"https://doi.org/10.1007/s00190-024-01909-3","url":null,"abstract":"","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"18 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modification methods of the Stokes’ kernel for determining the (quasi-) geoid with the Remove-Compute-Restore technique 利用移除-计算-恢复技术确定(准)大地水准面的斯托克斯核修改方法
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-07 DOI: 10.1007/s00190-024-01902-w
Jian Ma, Ziqing Wei, Zhenhe Zhai, Duan Li, Changqiang Feng, Xiaogang Liu, Bin Guan

The geoid and quasi-geoid serve as the reference surfaces of the orthometric and normal height systems, respectively. In order to improve the accuracy of the (quasi-) geoid determined by the Stokes integral with use of the Remove-Compute-Restore (RCR) technique, various modification methods for the spherical Stokes’ kernels, including the spheroidal, cosine-, power-, and Molodensky-modified kernels, are studied in this paper. In addition to the traditional Molodensky-modified Stokes’ kernel, a more effective Molodensky-modified Stokes’ kernel is put forward. A general formula for spectral decomposition of the Stokes integral in the RCR mode is derived, followed by the spectral analysis to reveal the transfer principles of gravity data when using different Stokes’ kernels. The spheroidal and modified Stokes integrals can cause spectral leakage phenomenon, and a method to eliminate spectral leakage is presented based on spectral analysis. The research indicates the low truncation degree of the spheroidal Stokes’ kernel and the low modification degrees of the modified Stokes’ kernel affect the accuracy of the (quasi-) geoid significantly. Quantitative methods for estimating the empirical values of the parameters of the low-degree spheroidal and modified Stokes’ kernels are proposed and the effectiveness of the methods is validated through numerical tests.

大地水准面和准大地水准面分别作为正高和法高系统的基准面。为了利用去除-计算-恢复(RCR)技术提高通过斯托克斯积分确定的(准)大地水准面的精度,本文研究了球面斯托克斯核的各种修正方法,包括球面核、余弦核、幂核和莫洛登斯基修正核。除了传统的 Molodensky 修正斯托克斯核之外,还提出了一种更有效的 Molodensky 修正斯托克斯核。推导出了 RCR 模式下斯托克斯积分的谱分解通式,并通过谱分析揭示了使用不同斯托克斯核时重力数据的传递原理。球面斯托克斯积分和修正斯托克斯积分会导致频谱泄漏现象,基于频谱分析提出了消除频谱泄漏的方法。研究表明,球面斯托克斯核的低截断度和修正斯托克斯核的低修正度会严重影响(准)大地水准面的精度。提出了估算低度球面斯托克斯核和修正斯托克斯核参数经验值的定量方法,并通过数值试验验证了这些方法的有效性。
{"title":"Modification methods of the Stokes’ kernel for determining the (quasi-) geoid with the Remove-Compute-Restore technique","authors":"Jian Ma, Ziqing Wei, Zhenhe Zhai, Duan Li, Changqiang Feng, Xiaogang Liu, Bin Guan","doi":"10.1007/s00190-024-01902-w","DOIUrl":"https://doi.org/10.1007/s00190-024-01902-w","url":null,"abstract":"<p>The geoid and quasi-geoid serve as the reference surfaces of the orthometric and normal height systems, respectively. In order to improve the accuracy of the (quasi-) geoid determined by the Stokes integral with use of the Remove-Compute-Restore (RCR) technique, various modification methods for the spherical Stokes’ kernels, including the spheroidal, cosine-, power-, and Molodensky-modified kernels, are studied in this paper. In addition to the traditional Molodensky-modified Stokes’ kernel, a more effective Molodensky-modified Stokes’ kernel is put forward. A general formula for spectral decomposition of the Stokes integral in the RCR mode is derived, followed by the spectral analysis to reveal the transfer principles of gravity data when using different Stokes’ kernels. The spheroidal and modified Stokes integrals can cause spectral leakage phenomenon, and a method to eliminate spectral leakage is presented based on spectral analysis. The research indicates the low truncation degree of the spheroidal Stokes’ kernel and the low modification degrees of the modified Stokes’ kernel affect the accuracy of the (quasi-) geoid significantly. Quantitative methods for estimating the empirical values of the parameters of the low-degree spheroidal and modified Stokes’ kernels are proposed and the effectiveness of the methods is validated through numerical tests.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"77 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new method for global ionospheric real-time modeling integrating ionospheric VTEC short-term forecast results 整合电离层 VTEC 短期预报结果的全球电离层实时建模新方法
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-06 DOI: 10.1007/s00190-024-01911-9
Peng Chen, Rong Wang, Yibin Yao, Mingzhu Xiong, Yuchen Zhang, Xinyue Yang

As an important data source for monitoring the behavior and variations of the ionosphere, the accuracy of current real-time global ionospheric maps (RT-GIMs) in low-latitude regions and oceanic regions is usually poor, and the accuracy during geomagnetic storms is not ideal. Therefore, the ionospheric vertical total electron content (VTEC) short-term forecast results were integrated into the global ionospheric real-time modeling process to improve the accuracy of RT-GIMs. Firstly, the preliminary RT-GIMs were established by constructing a virtual grid and determining the number of ionospheric pierce points in the grid. Then, different strategies were used to determine the virtual VTEC observations and filled the preliminary RT-GIMs. Finally, the filled RT-GIMs were modeled using spherical harmonic expansion and generated the final RT-GIMs, XRTG. On this basis, three ways were selected to evaluate the accuracy of XRTG. The GPS dSTEC (differential slant total electron content) assessment results showed that the performance of XRTG was the closest to that of Centre for Orbit Determination in Europe’s final GIMs (CODG), and it outperformed other RT-GIMs during geomagnetic storm periods and low-latitude regions. Compared with Universitat Politècnica de Catalunya’s RT-GIMs (UADG) with better performance in other RT-GIMs, the maximum decrease in root mean square error (RMSE) of XRTG during the geomagnetic storm period exceeds 25%, and the maximum decrease in the overall average RMSE of the 20 stations in low latitudes exceeds 27%. The Jason-3 VTEC assessment results showed that the accuracy of XRTG was closer to that of UADG and CODG, and the performance of XRTG and UADG in the range of 22° N–22° S was significantly better than that of other RT-GIMs. The consistency between XRTG and Universitat Politècnica de Catalunya’s rapid GIMs, Chinese Academy of Sciences’ final GIMs, and CODG was good, and the VTEC deviations from each post-processing GIMs were mainly concentrated in the range of ± 5 TECU.

作为监测电离层行为和变化的重要数据源,目前低纬度地区和海洋地区的全球电离层实时地图(RT-GIMs)的精度通常较差,地磁暴期间的精度也不理想。因此,将电离层垂直电子总含量(VTEC)短期预报结果纳入全球电离层实时建模过程,以提高 RT-GIMs 的精度。首先,通过构建虚拟网格和确定网格中电离层穿透点的数量来建立初步的 RT-GIM。然后,使用不同的策略确定虚拟 VTEC 观测数据并填充初步 RT-GIM。最后,利用球谐波展开对填充的 RT-GIMs 进行建模,生成最终的 RT-GIMs XRTG。在此基础上,选择了三种方法来评估 XRTG 的精度。全球定位系统 dSTEC(差分斜面总电子含量)评估结果表明,XRTG 的性能最接近欧洲轨道确定中心(CODG)的最终 GIMs,在地磁暴期间和低纬度地区的性能优于其他 RT-GIMs。与加泰罗尼亚理工大学的 RT-GIMs(UADG)相比,XRTG 在地磁暴期间的均方根误差(RMSE)最大降幅超过 25%,低纬度地区 20 个站点的总体平均均方根误差最大降幅超过 27%。Jason-3 VTEC 评估结果表明,XRTG 的精度与 UADG 和 CODG 比较接近,XRTG 和 UADG 在北纬 22°-南纬 22°范围内的性能明显优于其他 RT-GIMs 。XRTG 与加泰罗尼亚理工大学的快速 GIMs、中国科学院的最终 GIMs 和 CODG 的一致性较好,与各后处理 GIMs 的 VTEC 偏差主要集中在 ± 5 TECU 范围内。
{"title":"A new method for global ionospheric real-time modeling integrating ionospheric VTEC short-term forecast results","authors":"Peng Chen, Rong Wang, Yibin Yao, Mingzhu Xiong, Yuchen Zhang, Xinyue Yang","doi":"10.1007/s00190-024-01911-9","DOIUrl":"https://doi.org/10.1007/s00190-024-01911-9","url":null,"abstract":"<p>As an important data source for monitoring the behavior and variations of the ionosphere, the accuracy of current real-time global ionospheric maps (RT-GIMs) in low-latitude regions and oceanic regions is usually poor, and the accuracy during geomagnetic storms is not ideal. Therefore, the ionospheric vertical total electron content (VTEC) short-term forecast results were integrated into the global ionospheric real-time modeling process to improve the accuracy of RT-GIMs. Firstly, the preliminary RT-GIMs were established by constructing a virtual grid and determining the number of ionospheric pierce points in the grid. Then, different strategies were used to determine the virtual VTEC observations and filled the preliminary RT-GIMs. Finally, the filled RT-GIMs were modeled using spherical harmonic expansion and generated the final RT-GIMs, XRTG. On this basis, three ways were selected to evaluate the accuracy of XRTG. The GPS dSTEC (differential slant total electron content) assessment results showed that the performance of XRTG was the closest to that of Centre for Orbit Determination in Europe’s final GIMs (CODG), and it outperformed other RT-GIMs during geomagnetic storm periods and low-latitude regions. Compared with Universitat Politècnica de Catalunya’s RT-GIMs (UADG) with better performance in other RT-GIMs, the maximum decrease in root mean square error (RMSE) of XRTG during the geomagnetic storm period exceeds 25%, and the maximum decrease in the overall average RMSE of the 20 stations in low latitudes exceeds 27%. The Jason-3 VTEC assessment results showed that the accuracy of XRTG was closer to that of UADG and CODG, and the performance of XRTG and UADG in the range of 22° N–22° S was significantly better than that of other RT-GIMs. The consistency between XRTG and Universitat Politècnica de Catalunya’s rapid GIMs, Chinese Academy of Sciences’ final GIMs, and CODG was good, and the VTEC deviations from each post-processing GIMs were mainly concentrated in the range of ± 5 TECU.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"127 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power function of $${varvec{F}}-$$ distribution: revisiting its computation and solution for geodetic studies $${varvec{F}}-$分布的幂函数:重新审视其在大地测量研究中的计算和解法
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-05 DOI: 10.1007/s00190-024-01905-7
Cüneyt Aydin, Özge Güneş

The power function of (F-) distribution is the complementary cumulative distribution function of the non-central (F-) distribution. It is used to evaluate the power of the test based on the (F) or ({chi }^{2}-) distributed statistics. This paper revisits its computation and solution for the non-centrality parameter in geodetic studies and shows that the power function related to these studies can be computed efficiently and with minimal effort. To facilitate this, we introduce a novel standalone algorithm that consistently computes the power of the test, even for large non-centrality parameters (e.g., (>{10}^{5})) and for ({chi }^{2})-distribution. The solution of the power function for the non-centrality parameter is typically obtained using standard root finding algorithms, such as the bisection or Newton–Raphson methods. However, they may encounter convergence problems, particularly when the non-centrality parameter increases. We demonstrate that a solution can be readily obtained from a logarithmic form of the power function, ensuring convergence and removing the requirement for a precisely defined initial value. Furthermore, we utilize a few geometric relationships during the iteration to expedite the solution process. As a result, we propose a novel solution algorithm that is highly precise, stable, and at least four times faster than standard algorithms, even for the solution interval of (<{0, 10}^{6}>). This efficient solution is published online as a web-based application for geodetic detectability studies in addition to the given MATLAB and Python codes.

(F-)分布的功率函数是非中心(F-)分布的互补累积分布函数。它用于评估基于(F)或({chi }^{2}-)分布统计的检验功率。本文重新探讨了它的计算方法以及大地测量研究中非中心性参数的解决方法,并表明与这些研究相关的幂函数可以通过最小的努力高效地计算出来。为了便于计算,我们引入了一种新颖的独立算法,即使在非中心性参数较大(例如,(>{10}^{5}))和({chi }^{2})分布的情况下,也能持续计算检验的幂函数。非中心性参数幂函数的求解通常使用标准的寻根算法,如分段法或牛顿-拉夫逊法。然而,它们可能会遇到收敛问题,尤其是当非中心性参数增大时。我们证明,可以很容易地从幂函数的对数形式得到一个解,从而确保收敛性,并消除对精确定义的初始值的要求。此外,我们在迭代过程中利用了一些几何关系来加快求解过程。因此,我们提出了一种新颖的求解算法,该算法高度精确、稳定,即使在求解区间为 (<{0, 10}^{6}>) 时,也比标准算法至少快四倍。除了给出的 MATLAB 和 Python 代码外,这一高效解决方案还作为大地测量可探测性研究的网络应用程序在线发布。
{"title":"Power function of $${varvec{F}}-$$ distribution: revisiting its computation and solution for geodetic studies","authors":"Cüneyt Aydin, Özge Güneş","doi":"10.1007/s00190-024-01905-7","DOIUrl":"https://doi.org/10.1007/s00190-024-01905-7","url":null,"abstract":"<p>The power function of <span>(F-)</span> distribution is the complementary cumulative distribution function of the non-central <span>(F-)</span> distribution. It is used to evaluate the power of the test based on the <span>(F)</span> or <span>({chi }^{2}-)</span> distributed statistics. This paper revisits its computation and solution for the non-centrality parameter in geodetic studies and shows that the power function related to these studies can be computed efficiently and with minimal effort. To facilitate this, we introduce a novel standalone algorithm that consistently computes the power of the test, even for large non-centrality parameters (e.g., <span>(&gt;{10}^{5})</span>) and for <span>({chi }^{2})</span>-distribution. The solution of the power function for the non-centrality parameter is typically obtained using standard root finding algorithms, such as the bisection or Newton–Raphson methods. However, they may encounter convergence problems, particularly when the non-centrality parameter increases. We demonstrate that a solution can be readily obtained from a logarithmic form of the power function, ensuring convergence and removing the requirement for a precisely defined initial value. Furthermore, we utilize a few geometric relationships during the iteration to expedite the solution process. As a result, we propose a novel solution algorithm that is highly precise, stable, and at least four times faster than standard algorithms, even for the solution interval of <span>(&lt;{0, 10}^{6}&gt;)</span>. This efficient solution is published online as a web-based application for geodetic detectability studies in addition to the given MATLAB and Python codes.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"29 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Geodesy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1