Twin-distortion modulated ultra-low coordination PtRuNi-Ox catalyst for enhanced hydrogen production from chemical wastewater

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-22 DOI:10.1038/s41467-024-54513-6
Yue Zhang, Xueqin Mu, Zhengyang Liu, Hongyu Zhao, Zechao Zhuang, Yifan Zhang, Shichun Mu, Suli Liu, Dingsheng Wang, Zhuhui Dai
{"title":"Twin-distortion modulated ultra-low coordination PtRuNi-Ox catalyst for enhanced hydrogen production from chemical wastewater","authors":"Yue Zhang, Xueqin Mu, Zhengyang Liu, Hongyu Zhao, Zechao Zhuang, Yifan Zhang, Shichun Mu, Suli Liu, Dingsheng Wang, Zhuhui Dai","doi":"10.1038/s41467-024-54513-6","DOIUrl":null,"url":null,"abstract":"<p>The development of efficient and robust catalysts for hydrogen evolution reaction is crucial for advancing the hydrogen economy. In this study, we demonstrate that ultra-low coordinated hollow PtRuNi-O<sub>x</sub> nanocages exhibit superior catalytic activity and stability across varied conditions, notably surpassing commercial Pt/C catalysts. Notably, the PtRuNi-O<sub>x</sub> catalysts achieve current densities of 10 mA cm<sup>−2</sup> at only 19.6 ± 0.1, 20.9 ± 0.1, and 21.0 ± 0.1 mV in alkaline freshwater, chemical wastewater, and seawater, respectively, while maintaining satisfied stability with minimal activity loss after 40,000 cycles. In situ experiments and theoretical calculations reveal that the ultra-low coordination of Pt, Ru, and Ni atoms creates numerous dangling bonds, which lower the water dissociation barrier and optimizing hydrogen adsorption. This research marks a notable advancement in the precise engineering of atomically dispersed multi-metallic centers in catalysts for energy-related applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"254 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54513-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient and robust catalysts for hydrogen evolution reaction is crucial for advancing the hydrogen economy. In this study, we demonstrate that ultra-low coordinated hollow PtRuNi-Ox nanocages exhibit superior catalytic activity and stability across varied conditions, notably surpassing commercial Pt/C catalysts. Notably, the PtRuNi-Ox catalysts achieve current densities of 10 mA cm−2 at only 19.6 ± 0.1, 20.9 ± 0.1, and 21.0 ± 0.1 mV in alkaline freshwater, chemical wastewater, and seawater, respectively, while maintaining satisfied stability with minimal activity loss after 40,000 cycles. In situ experiments and theoretical calculations reveal that the ultra-low coordination of Pt, Ru, and Ni atoms creates numerous dangling bonds, which lower the water dissociation barrier and optimizing hydrogen adsorption. This research marks a notable advancement in the precise engineering of atomically dispersed multi-metallic centers in catalysts for energy-related applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双失真调制超低配位 PtRuNi-Ox 催化剂用于提高化工废水制氢能力
开发高效、稳健的氢进化反应催化剂对于推动氢经济的发展至关重要。在本研究中,我们证明了超低配位空心铂钌镍氧纳米笼在各种条件下均表现出卓越的催化活性和稳定性,明显超过了商用铂/镍催化剂。值得注意的是,PtRuNi-Ox 催化剂在碱性淡水、化学废水和海水中的电流密度分别为 10 mA cm-2、19.6 ± 0.1、20.9 ± 0.1 和 21.0 ± 0.1 mV,同时在 40,000 次循环后仍能保持满意的稳定性,活性损失极小。现场实验和理论计算表明,铂、钌和镍原子的超低配位产生了大量悬键,从而降低了水解离障碍,优化了氢吸附。这项研究标志着在能源相关应用催化剂中精确设计原子分散多金属中心方面取得了显著进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet Interstellar formation of lactaldehyde, a key intermediate in the methylglyoxal pathway Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure Structural insight into the distinct regulatory mechanism of the HEPN–MNT toxin-antitoxin system in Legionella pneumophila
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1