{"title":"A classical chiral spin liquid from chiral interactions on the pyrochlore lattice","authors":"Daniel Lozano-Gómez, Yasir Iqbal, Matthias Vojta","doi":"10.1038/s41467-024-54558-7","DOIUrl":null,"url":null,"abstract":"<p>Classical spin liquids are paramagnetic phases that feature nontrivial patterns of spin correlations within their ground-state manifold whose degeneracy scales with system size. Often they harbor fractionalized excitations, and their low-energy fluctuations are described by emergent gauge theories. In this work, we discuss a model composed of chiral three-body spin interactions on the pyrochlore lattice that realizes a novel classical chiral spin liquid whose excitations are fractonalized while also displaying a fracton-like behavior. We demonstrate that the ground-state manifold of this spin liquid is given by a subset of the so-called color-ice states. We show that the low-energy states are captured by an effective gauge theory which possesses a divergence-free condition and an additional chiral term that constrains the total flux of the fields through a single tetrahedron. The divergence-free constraint on the gauge fields results in two-fold pinch points in the spin structure factor and the identification of bionic charges as excitations of the system.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"5 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54558-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Classical spin liquids are paramagnetic phases that feature nontrivial patterns of spin correlations within their ground-state manifold whose degeneracy scales with system size. Often they harbor fractionalized excitations, and their low-energy fluctuations are described by emergent gauge theories. In this work, we discuss a model composed of chiral three-body spin interactions on the pyrochlore lattice that realizes a novel classical chiral spin liquid whose excitations are fractonalized while also displaying a fracton-like behavior. We demonstrate that the ground-state manifold of this spin liquid is given by a subset of the so-called color-ice states. We show that the low-energy states are captured by an effective gauge theory which possesses a divergence-free condition and an additional chiral term that constrains the total flux of the fields through a single tetrahedron. The divergence-free constraint on the gauge fields results in two-fold pinch points in the spin structure factor and the identification of bionic charges as excitations of the system.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.