Astrid Blom, Clàudia Ylla Arbós, M. Kifayath Chowdhury, Arjen Doelman, Max Rietkerk, Ralph M. J. Schielen
{"title":"Indications of Ongoing Noise-Tipping of a Bifurcating River System","authors":"Astrid Blom, Clàudia Ylla Arbós, M. Kifayath Chowdhury, Arjen Doelman, Max Rietkerk, Ralph M. J. Schielen","doi":"10.1029/2024GL111846","DOIUrl":null,"url":null,"abstract":"<p>Tipping occurs when a critical point is reached, beyond which a perturbation leads to persistent system change. Here, we present observational indications demonstrating presently ongoing noise-tipping of a real-world system. Noise in a river system is associated with the changing flow rate. In particular, we consider the upper Rhine River delta, where flow and sediment fluxes are partitioned over the two downstream branches (bifurcates) of an important river bifurcation. Field observations show that a sequence of peak flows in the 1990s resulted in sudden sediment deposition in one bifurcate, triggering a persistent and ongoing change in the flow partitioning. This has caused the system to move toward an alternative equilibrium state or attractor. An idealized model confirms that a river bifurcation system under such conditions is prone to tipping, and provides insight on the onset of tipping.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 22","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111846","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111846","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tipping occurs when a critical point is reached, beyond which a perturbation leads to persistent system change. Here, we present observational indications demonstrating presently ongoing noise-tipping of a real-world system. Noise in a river system is associated with the changing flow rate. In particular, we consider the upper Rhine River delta, where flow and sediment fluxes are partitioned over the two downstream branches (bifurcates) of an important river bifurcation. Field observations show that a sequence of peak flows in the 1990s resulted in sudden sediment deposition in one bifurcate, triggering a persistent and ongoing change in the flow partitioning. This has caused the system to move toward an alternative equilibrium state or attractor. An idealized model confirms that a river bifurcation system under such conditions is prone to tipping, and provides insight on the onset of tipping.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.