Simin Li , Shuang-hua Yang , Yi Cao , Xiaoping Jiang , Chenchen Zhou
{"title":"A benchmark of industrial polymerization process for thermal runaway process monitoring","authors":"Simin Li , Shuang-hua Yang , Yi Cao , Xiaoping Jiang , Chenchen Zhou","doi":"10.1016/j.psep.2024.11.057","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer production is of paramount importance in the chemical manufacturing industry. However, safety concerns are prevalent due to the exothermic nature of polymerization reactions, which can cause thermal runaway. The limitations of the current industry-standard monitoring methods underscore the need for novel techniques to detect faults early. To facilitate the development and evaluation of such algorithms, benchmarks that enable direct comparisons of performance are required. Addressing this gap, the present work first introduces an open-source polymerization benchmark model and associated datasets. Derived from reaction kinetics, mass balance, and energy balance analysis, the differential equation forms the basis of our model. By manipulating relative parameters, we intentionally induce five typical faults that can lead to thermal runaway. As a result, our benchmark model serves as an invaluable tool for advancing and validating algorithms for thermal runaway process monitoring, significantly enhancing the safety of the polymerization process. The effectiveness of the model and dataset is demonstrated by testing multivariate statistical process monitoring algorithms and deep learning algorithms.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"193 ","pages":"Pages 353-363"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024014708","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer production is of paramount importance in the chemical manufacturing industry. However, safety concerns are prevalent due to the exothermic nature of polymerization reactions, which can cause thermal runaway. The limitations of the current industry-standard monitoring methods underscore the need for novel techniques to detect faults early. To facilitate the development and evaluation of such algorithms, benchmarks that enable direct comparisons of performance are required. Addressing this gap, the present work first introduces an open-source polymerization benchmark model and associated datasets. Derived from reaction kinetics, mass balance, and energy balance analysis, the differential equation forms the basis of our model. By manipulating relative parameters, we intentionally induce five typical faults that can lead to thermal runaway. As a result, our benchmark model serves as an invaluable tool for advancing and validating algorithms for thermal runaway process monitoring, significantly enhancing the safety of the polymerization process. The effectiveness of the model and dataset is demonstrated by testing multivariate statistical process monitoring algorithms and deep learning algorithms.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.