Joanna E. Sobczyk , Noemi Rocco , Alessandro Lovato
{"title":"Modeling inclusive electron-nucleus scattering with Bayesian artificial neural networks","authors":"Joanna E. Sobczyk , Noemi Rocco , Alessandro Lovato","doi":"10.1016/j.physletb.2024.139142","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a Bayesian protocol based on artificial neural networks that is suitable for modeling inclusive electron-nucleus scattering on a variety of nuclear targets with quantified uncertainties. Unlike previous applications in the field, which directly parameterize the cross sections, our approach employs artificial neural networks to represent the longitudinal and transverse response functions. In contrast to cross sections, which depend on the incoming energy, scattering angle, and energy transfer, the response functions are determined solely by the energy and momentum transfer to the system, allowing the angular component to be treated analytically. We assess the accuracy and predictive power of our framework against the extensive data in the quasielastic inclusive electron-scattering database. Additionally, we present novel extractions of the longitudinal and transverse response functions and compare them with previous experimental analysis and nuclear ab-initio calculations.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"859 ","pages":"Article 139142"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269324007007","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a Bayesian protocol based on artificial neural networks that is suitable for modeling inclusive electron-nucleus scattering on a variety of nuclear targets with quantified uncertainties. Unlike previous applications in the field, which directly parameterize the cross sections, our approach employs artificial neural networks to represent the longitudinal and transverse response functions. In contrast to cross sections, which depend on the incoming energy, scattering angle, and energy transfer, the response functions are determined solely by the energy and momentum transfer to the system, allowing the angular component to be treated analytically. We assess the accuracy and predictive power of our framework against the extensive data in the quasielastic inclusive electron-scattering database. Additionally, we present novel extractions of the longitudinal and transverse response functions and compare them with previous experimental analysis and nuclear ab-initio calculations.
期刊介绍:
Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.