首页 > 最新文献

Physics Letters B最新文献

英文 中文
Heavy four-quark mesons bcb‾c‾: Scalar particle 重四夸克介子 bcb‾c‾:标量粒子
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-27 DOI: 10.1016/j.physletb.2024.139042
<div><div>Parameters of the heavy four-quark scalar meson <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>bc</mi><mover><mrow><mi>b</mi></mrow><mo>‾</mo></mover><mover><mrow><mi>c</mi></mrow><mo>‾</mo></mover></mrow></msub></math></span> with content <span><math><mi>b</mi><mi>c</mi><mover><mrow><mi>b</mi></mrow><mo>‾</mo></mover><mover><mrow><mi>c</mi></mrow><mo>‾</mo></mover></math></span> are calculated by means of the sum rule method. This structure is considered as a diquark-antidiquark state built of scalar diquark and antidiquark components. The mass and current coupling of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>bc</mi><mover><mrow><mi>b</mi></mrow><mo>‾</mo></mover><mover><mrow><mi>c</mi></mrow><mo>‾</mo></mover></mrow></msub></math></span> are evaluated in the context of the two-point sum rule approach. The full width of this tetraquark is estimated by taking into account two types of its possible strong decay channels. First class includes dissociation of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>bc</mi><mover><mrow><mi>b</mi></mrow><mo>‾</mo></mover><mover><mrow><mi>c</mi></mrow><mo>‾</mo></mover></mrow></msub></math></span> to mesons <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>c</mi></mrow></msub><msub><mrow><mi>η</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span>, <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>+</mo></mrow></msubsup><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo><mo>+</mo></mrow></msubsup><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo><mo>−</mo></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><msup><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo><mo>−</mo></mrow></msubsup></math></span>. Another type of processes are generated by annihilations <span><math><mover><mrow><mi>b</mi></mrow><mo>‾</mo></mover><mi>b</mi><mo>→</mo><mover><mrow><mi>q</mi></mrow><mo>‾</mo></mover><mi>q</mi></math></span> of constituent <em>b</em>-quarks which produces the final-state charmed meson pairs <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msup><msup><mrow><mover><mrow><mi>D</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn></mrow></msup></math></span>, <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo><mo>+</mo></mrow></msup><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo><mo>−</mo></mrow></msup></math></span>, and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo><mn>0</mn></mrow></msup><msup><mr
利用和则法计算了含有bcb-‾c-‾的重四夸克标量介子Tbcb-‾c-‾的参数。这种结构被认为是由标量二夸克和反二夸克组成的二夸克-反二夸克态。在两点和则方法的背景下评估了Tbcb‾c‾的质量和电流耦合。通过考虑两类可能的强衰变通道,估算了这种四夸克的全宽。第一类包括Tbcb‾c‾解离成介子ηcηb、Bc+Bc-、Bc⁎+Bc⁎-和Bc+(13P0)Bc⁎-。另一类过程是由组成b-夸克的湮灭b‾b→q‾q产生的,它们产生了终态的粲介子对D+D-、D0D‾0、D⁎+D⁎-和D⁎0D‾⁎0。所有这些衰变的部分宽度都是用三点和规则方法找到的,而计算相应介子-介子-四夸克顶点的强耦合需要这种方法。对该状态的质量m=(12697±90)MeV和宽度Γ[Tbcb-‾c-‾]=(142.4±16.9)MeV进行了预测,并与其他结果进行了比较,这对全重共振的进一步实验研究很有帮助。
{"title":"Heavy four-quark mesons bcb‾c‾: Scalar particle","authors":"","doi":"10.1016/j.physletb.2024.139042","DOIUrl":"10.1016/j.physletb.2024.139042","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Parameters of the heavy four-quark scalar meson &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;bc&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; with content &lt;span&gt;&lt;math&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; are calculated by means of the sum rule method. This structure is considered as a diquark-antidiquark state built of scalar diquark and antidiquark components. The mass and current coupling of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;bc&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are evaluated in the context of the two-point sum rule approach. The full width of this tetraquark is estimated by taking into account two types of its possible strong decay channels. First class includes dissociation of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;bc&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; to mesons &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;. Another type of processes are generated by annihilations &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of constituent &lt;em&gt;b&lt;/em&gt;-quarks which produces the final-state charmed meson pairs &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mr","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological diagram analysis of Bc3‾→B10M decays in the SU(3)F limit and beyond SU(3)F极限及之后[式略]衰变的拓扑图分析
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-26 DOI: 10.1016/j.physletb.2024.139039
<div><div>Charm baryon decay plays an important role in studying non-perturbative baryonic transitions. Compared to other hadron multiplets, the flavor symmetry of baryon decuplet is more simple and attractive. In this work, we study the topological amplitudes of charmed baryon decays into decuplet baryon in the flavor symmetry and the linear <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>F</mi></mrow></msub></math></span> breaking. It is found most of topological diagrams are suppressed by the Körner-Pati-Woo theorem in the <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>F</mi></mrow></msub></math></span> limit. Only two independent amplitudes contributing to the <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi><mover><mrow><mn>3</mn></mrow><mo>‾</mo></mover></mrow></msub><mo>→</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>10</mn></mrow></msub><mi>M</mi></math></span> decays, with one dominating the branching fractions. The Lee-Yang parameters of all <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi><mover><mrow><mn>3</mn></mrow><mo>‾</mo></mover></mrow></msub><mo>→</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>10</mn></mrow></msub><mi>M</mi></math></span> modes are the same in the <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>F</mi></mrow></msub></math></span> limit, and there are only four possible values for the CP asymmetries. After including the first-order <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>F</mi></mrow></msub></math></span> breaking effects, the <span><math><msubsup><mrow><mi>Ξ</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>⁎</mo><mo>+</mo></mrow></msup><msup><mrow><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn></mrow></msup></math></span> and <span><math><msubsup><mrow><mi>Ξ</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><msup><mrow><mi>Ξ</mi></mrow><mrow><mo>⁎</mo><mn>0</mn></mrow></msup><msup><mrow><mi>π</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> decays have non-zero branching fractions. The number of free parameter contributing to the <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi><mover><mrow><mn>3</mn></mrow><mo>‾</mo></mover></mrow></msub><mo>→</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>10</mn></mrow></msub><mi>M</mi></math></span> decays in the linear <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>F</mi></mrow></msub></math></span> breaking is smaller than the available data. The <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>F</mi></mrow></msub></math></span> breaking part of the quark loop diagram can be extracted by global fitting of branching fractions, which could help us understand the CP violation in
魅力重子衰变在研究非微扰重子跃迁方面发挥着重要作用。与其他强子多子相比,粲重子衰变的味道对称性更简单、更有吸引力。在这项工作中,我们研究了在味道对称和线性SU(3)F破缺的情况下,粲重子衰变成小重子的拓扑振幅。研究发现,在 SU(3)F 极限,大多数拓扑图都被柯尔纳-帕蒂-沃定理所抑制。Bc3‾→B10M衰变只有两个独立的振幅,其中一个主导着分支分数。在SU(3)F极限中,所有Bc3‾→B10M模式的李-杨参数都是相同的,CP不对称也只有四种可能的值。在包括一阶 SU(3)F 破缺效应之后,Ξc+→Σ⁎+K‾0 和Ξc+→Ξ⁎0π+ 衰变的分支分数都不为零。在线性SU(3)F破缺中,对Bc3‾→B10M衰变有贡献的自由参数数量小于现有数据。夸克环图的SU(3)F破缺部分可以通过支化分数的全局拟合来提取,这有助于我们理解符部门的CP违反。此外,我们还提出了一些新的等空间方程来检验柯尔纳-帕蒂-沃定理。
{"title":"Topological diagram analysis of Bc3‾→B10M decays in the SU(3)F limit and beyond","authors":"","doi":"10.1016/j.physletb.2024.139039","DOIUrl":"10.1016/j.physletb.2024.139039","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Charm baryon decay plays an important role in studying non-perturbative baryonic transitions. Compared to other hadron multiplets, the flavor symmetry of baryon decuplet is more simple and attractive. In this work, we study the topological amplitudes of charmed baryon decays into decuplet baryon in the flavor symmetry and the linear &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; breaking. It is found most of topological diagrams are suppressed by the Körner-Pati-Woo theorem in the &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; limit. Only two independent amplitudes contributing to the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; decays, with one dominating the branching fractions. The Lee-Yang parameters of all &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; modes are the same in the &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; limit, and there are only four possible values for the CP asymmetries. After including the first-order &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; breaking effects, the &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; decays have non-zero branching fractions. The number of free parameter contributing to the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; decays in the linear &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; breaking is smaller than the available data. The &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; breaking part of the quark loop diagram can be extracted by global fitting of branching fractions, which could help us understand the CP violation in ","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold darkogenesis: Dark matter and baryon asymmetry in light of the PTA signal 冷暗物质生成:从PTA信号看暗物质和重子不对称性
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-26 DOI: 10.1016/j.physletb.2024.139045
We build upon the intriguing possibility that the recently reported nano-Hz gravitational wave signal by Pulsar Timing Array (PTA) experiments is sourced by a strong first-order phase transition from a nearly conformal dark sector. The phase transition has to be strongly supercooled to explain the signal amplitude, while the critical temperature has to be in the O(GeV) range, as dictated by the peak frequency of the gravitational wave spectrum. However, the resulting strong supercooling exponentially dilutes away any pre-existing baryon asymmetry and dark matter, calling for a new paradigm of their productions. We then develop a mechanism of cold darkogenesis that generates a dark asymmetry during the phase transition from the textured dark SU(2)D Higgs field. This dark asymmetry is transferred to the visible sector via neutron portal interactions, resulting in the observed baryon asymmetry. Furthermore, the mechanism naturally leads to the correct abundance of asymmetric dark matter, with self-interaction of the scale that is of the right order to solve the diversity problem in galactic rotation curves. Collider searches for mono-jets and dark matter direct detection experiments can dictate the viability of the model.
脉冲星定时阵列(PTA)实验最近报告的纳赫兹引力波信号是由一个近乎共形的暗扇区的强一阶相变产生的,我们基于这种引人入胜的可能性。相变必须是强过冷才能解释信号振幅,而临界温度必须在 O(GeV)范围内,这是由引力波频谱的峰值频率决定的。然而,由此产生的强过冷会以指数方式稀释掉任何先前存在的重子不对称和暗物质,这就需要一种新的暗物质产生范式。随后,我们提出了一种冷暗物质生成机制,它能在纹理暗 SU(2)D 希格斯场的相变过程中产生暗不对称。这种暗不对称通过中子门相互作用转移到可见扇区,从而产生观测到的重子不对称。此外,该机制自然会导致不对称暗物质的正确丰度,其自相互作用的尺度与解决银河旋转曲线多样性问题的尺度一致。对撞机单射流搜索和暗物质直接探测实验可以决定该模型的可行性。
{"title":"Cold darkogenesis: Dark matter and baryon asymmetry in light of the PTA signal","authors":"","doi":"10.1016/j.physletb.2024.139045","DOIUrl":"10.1016/j.physletb.2024.139045","url":null,"abstract":"<div><div>We build upon the intriguing possibility that the recently reported nano-Hz gravitational wave signal by Pulsar Timing Array (PTA) experiments is sourced by a strong first-order phase transition from a nearly conformal dark sector. The phase transition has to be strongly supercooled to explain the signal amplitude, while the critical temperature has to be in the <span><math><mi>O</mi></math></span>(GeV) range, as dictated by the peak frequency of the gravitational wave spectrum. However, the resulting strong supercooling exponentially dilutes away any pre-existing baryon asymmetry and dark matter, calling for a new paradigm of their productions. We then develop a mechanism of cold darkogenesis that generates a dark asymmetry during the phase transition from the textured dark <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>D</mi></mrow></msub></math></span> Higgs field. This dark asymmetry is transferred to the visible sector via neutron portal interactions, resulting in the observed baryon asymmetry. Furthermore, the mechanism naturally leads to the correct abundance of asymmetric dark matter, with self-interaction of the scale that is of the right order to solve the diversity problem in galactic rotation curves. Collider searches for mono-jets and dark matter direct detection experiments can dictate the viability of the model.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General expressions for on-shell recursion relations for tree-level open string amplitudes 树级开弦振幅的壳上递推关系的一般表达式
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-24 DOI: 10.1016/j.physletb.2024.139038
In this paper, we present a systematic derivation aimed at obtaining general expressions for on-shell recursion relations for tree-level open string amplitudes. Our approach involves applying the BCFW shift to an open string amplitude written in terms of multiple Gaussian hypergeometric functions. By employing binomial expansions, we demonstrate that the shifted amplitudes manifest simple poles, which correspond to scattering channels of intermediate states. Using the residue theorem, we thereby derive a general expression for these relations.
在本文中,我们提出了一种系统的推导方法,旨在获得树级开弦振幅的壳上递推关系的一般表达式。我们的方法是将 BCFW 移位应用于以多个高斯超几何函数写成的开弦振幅。通过使用二项式展开,我们证明了移位后的振幅表现出简单的极点,这些极点对应于中间态的散射通道。利用残差定理,我们推导出了这些关系的一般表达式。
{"title":"General expressions for on-shell recursion relations for tree-level open string amplitudes","authors":"","doi":"10.1016/j.physletb.2024.139038","DOIUrl":"10.1016/j.physletb.2024.139038","url":null,"abstract":"<div><div>In this paper, we present a systematic derivation aimed at obtaining general expressions for on-shell recursion relations for tree-level open string amplitudes. Our approach involves applying the BCFW shift to an open string amplitude written in terms of multiple Gaussian hypergeometric functions. By employing binomial expansions, we demonstrate that the shifted amplitudes manifest simple poles, which correspond to scattering channels of intermediate states. Using the residue theorem, we thereby derive a general expression for these relations.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A coherent microscopic picture for the exotic structure of 11Be 11Be奇异结构的连贯微观图景
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-23 DOI: 10.1016/j.physletb.2024.139036
The neutron-rich nucleus 11Be is one of the most enigmatic exotic nuclei in the periodic table. It exhibits a multitude of unique and intriguing phenomena within a single nucleus, including the halo phenomenon, clustering structure, and parity inversion. A unified description of these exotic properties represents a significant challenge for the nuclear physics field. By employing the axially deformed relativistic Hartree-Fock-Bogoliubov (D-RHFB) model, we have successfully reproduced the parity inversion and the one-neutron halo in 11Be, and revealed the underlying cluster structure. It is found that the intrusion of the sd-shell, which results in the parity inversion, is coherently connected with the halo and cluster structures. In particular, the s-wave is responsible for the halo formation, and the mixing of 2s1/2- and 1d5/2-waves enhances the cluster structure. This work elucidates the coherence between the parity inversion and the halo/cluster structures of 11Be, and addresses the long-standing challenge of providing a unified explanation for the multiple exotic phenomena observed in 11Be.
富中子核 11Be 是元素周期表中最神秘的奇异原子核之一。它在单个原子核内表现出多种独特而有趣的现象,包括晕现象、簇结构和奇偶反转。统一描述这些奇异特性是核物理领域面临的一项重大挑战。通过采用轴向变形相对论哈特里-福克-波哥留布夫(D-RHFB)模型,我们成功地再现了 11Be 中的奇偶反转和一中子晕,并揭示了其潜在的团簇结构。研究发现,导致奇偶性反转的 sd-壳的侵入与晕和簇结构是连贯的。特别是,s波是晕的形成原因,而2s1/2-波和1d5/2-波的混合增强了星团结构。这项工作阐明了 11Be 的奇偶性反转与光环/星团结构之间的一致性,并解决了为 11Be 中观测到的多种奇异现象提供统一解释这一长期挑战。
{"title":"A coherent microscopic picture for the exotic structure of 11Be","authors":"","doi":"10.1016/j.physletb.2024.139036","DOIUrl":"10.1016/j.physletb.2024.139036","url":null,"abstract":"<div><div>The neutron-rich nucleus <sup>11</sup>Be is one of the most enigmatic exotic nuclei in the periodic table. It exhibits a multitude of unique and intriguing phenomena within a single nucleus, including the halo phenomenon, clustering structure, and parity inversion. A unified description of these exotic properties represents a significant challenge for the nuclear physics field. By employing the axially deformed relativistic Hartree-Fock-Bogoliubov (D-RHFB) model, we have successfully reproduced the parity inversion and the one-neutron halo in <sup>11</sup>Be, and revealed the underlying cluster structure. It is found that the intrusion of the <em>sd</em>-shell, which results in the parity inversion, is coherently connected with the halo and cluster structures. In particular, the <em>s</em>-wave is responsible for the halo formation, and the mixing of <span><math><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span>- and <span><math><mn>1</mn><msub><mrow><mi>d</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span>-waves enhances the cluster structure. This work elucidates the coherence between the parity inversion and the halo/cluster structures of <sup>11</sup>Be, and addresses the long-standing challenge of providing a unified explanation for the multiple exotic phenomena observed in <sup>11</sup>Be.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise mass measurements of A = 133 isobars with the Canadian Penning Trap: Resolving the Qβ− anomaly at 133Te 利用加拿大潘宁陷阱对 A = 133 等值线进行精确质量测量:解决 133Te 的 Qβ- 异常现象
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-23 DOI: 10.1016/j.physletb.2024.139037
We report precision mass measurements of 133Sb, 133g,mTe, and 133g,mI, produced at CARIBU at Argonne National Laboratory's ATLAS facility and measured using the Canadian Penning Trap mass spectrometer. These masses clarify an anomaly in the 133Te β-decay. The masses reported in the 2020 Atomic Mass Evaluation (M. Wang et al., 2021) produce Qβ(133Te)=2920(6) keV; however, the highest-lying 133I level populated in this decay is observed at Ei=2935.83(15) keV, resulting in an anomalous Qβi=16(6) keV. Our new measurements give Qβ(Te133)=2934.8(11) keV, a factor of five more precise, yielding Qβi=1.0(12) keV, a 3σ shift from the previous results. This resolves this anomaly, but indicates further anomalies in our understanding of the structure of this isotope.
我们报告了133Sb、133g,mTe和133g,mI的精确质量测量结果,这些测量结果是在阿贡国家实验室ATLAS设施的CARIBU中产生的,并使用加拿大潘宁陷阱质谱仪进行了测量。这些质量澄清了 133Te β-衰变中的异常现象。2020 年原子质量评估》(M. Wang 等,2021 年)报告的质量产生了 Qβ-(133Te)=2920(6)keV;然而,在这一衰变中观测到的 133I 最高电平在 Ei=2935.83(15) keV,从而产生了反常的 Qβ-i=-16(6)keV。我们的新测量结果表明 Qβ-(Te133)=2934.8(11)keV,精确了五倍,得出 Qβi=-1.0(12)keV,与之前的结果相比有 3σ 的偏移。这解决了这一异常现象,但也表明我们对该同位素结构的理解存在进一步的异常。
{"title":"Precise mass measurements of A = 133 isobars with the Canadian Penning Trap: Resolving the Qβ− anomaly at 133Te","authors":"","doi":"10.1016/j.physletb.2024.139037","DOIUrl":"10.1016/j.physletb.2024.139037","url":null,"abstract":"<div><div>We report precision mass measurements of <sup>133</sup>Sb, <span><math><msup><mrow></mrow><mrow><mn>133</mn><mi>g</mi><mo>,</mo><mi>m</mi></mrow></msup></math></span>Te, and <span><math><msup><mrow></mrow><mrow><mn>133</mn><mi>g</mi><mo>,</mo><mi>m</mi></mrow></msup></math></span>I, produced at CARIBU at Argonne National Laboratory's ATLAS facility and measured using the Canadian Penning Trap mass spectrometer. These masses clarify an anomaly in the <sup>133</sup>Te <em>β</em>-decay. The masses reported in the 2020 Atomic Mass Evaluation (M. Wang et al., 2021) produce <span><math><msub><mrow><mi>Q</mi></mrow><mrow><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></msub><mo>(</mo><msup><mrow></mrow><mrow><mn>133</mn></mrow></msup></math></span>Te)=2920(6) keV; however, the highest-lying <sup>133</sup>I level populated in this decay is observed at <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>2935.83</mn><mo>(</mo><mn>15</mn><mo>)</mo></math></span> keV, resulting in an anomalous <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow><mrow><mi>i</mi></mrow></msubsup><mo>=</mo><mo>−</mo><mn>16</mn><mo>(</mo><mn>6</mn><mo>)</mo></math></span> keV. Our new measurements give <span><math><msub><mrow><mi>Q</mi></mrow><mrow><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></msub><mo>(</mo><mmultiscripts><mrow><mtext>Te</mtext></mrow><mprescripts></mprescripts><none></none><mrow><mn>133</mn></mrow></mmultiscripts><mo>)</mo><mo>=</mo><mn>2934.8</mn><mo>(</mo><mn>11</mn><mo>)</mo></math></span> keV, a factor of five more precise, yielding <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msubsup><mo>=</mo><mo>−</mo><mn>1.0</mn><mo>(</mo><mn>12</mn><mo>)</mo></math></span> keV, a 3<em>σ</em> shift from the previous results. This resolves this anomaly, but indicates further anomalies in our understanding of the structure of this isotope.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0370269324005951/pdfft?md5=a2d63dafc7095842ad61a143db9ace16&pid=1-s2.0-S0370269324005951-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong cosmic censorship in de Sitter spacetimes with dark matter 有暗物质的德西特时空中的强宇宙审查
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-20 DOI: 10.1016/j.physletb.2024.139035
After imposing the weak energy condition on dark matter, we find that even in the absence of charge, a spherically symmetric de Sitter black hole with perfect fluid dark matter may still possess a Cauchy horizon. This paper investigates the stability of the Cauchy horizon in such a black hole under perturbations from a massless scalar field. Through numerical calculations of the massless scalar field's quasinormal modes, we discover that in this spacetime, when the black hole approaches extremality, i.e., when the dark-matter parameter b approaches its maximum value bmax, the Strong Cosmic Censorship (SCC) conjecture may be violated. This is the first instance of classical SCC violation observed in a spherically symmetric, uncharged black hole. Additionally, we explore the region of SCC violation within the parameter space ΛM2b/bmax. Our findings indicate that as the cosmological constant increases, the violation region initially expands and then contracts.
在对暗物质施加弱能量条件后,我们发现即使在没有电荷的情况下,一个具有完美流体暗物质的球对称德西特黑洞仍然可能具有考奇地平线。本文研究了这种黑洞的考奇地平线在无质量标量场扰动下的稳定性。通过对无质量标量场准正态模式的数值计算,我们发现在这种时空中,当黑洞接近极值时,即暗物质参数b接近其最大值bmax时,可能会违反强宇宙审查(SCC)猜想。这是首次在球对称不带电黑洞中观测到经典的 SCC 违反现象。此外,我们还探索了参数空间ΛM2-b/bmax内的SCC违反区域。我们的研究结果表明,随着宇宙学常数的增加,违反区域最初会扩大,然后收缩。
{"title":"Strong cosmic censorship in de Sitter spacetimes with dark matter","authors":"","doi":"10.1016/j.physletb.2024.139035","DOIUrl":"10.1016/j.physletb.2024.139035","url":null,"abstract":"<div><div>After imposing the weak energy condition on dark matter, we find that even in the absence of charge, a spherically symmetric de Sitter black hole with perfect fluid dark matter may still possess a Cauchy horizon. This paper investigates the stability of the Cauchy horizon in such a black hole under perturbations from a massless scalar field. Through numerical calculations of the massless scalar field's quasinormal modes, we discover that in this spacetime, when the black hole approaches extremality, i.e., when the dark-matter parameter <em>b</em> approaches its maximum value <span><math><msub><mrow><mi>b</mi></mrow><mrow><mtext>max</mtext></mrow></msub></math></span>, the Strong Cosmic Censorship (SCC) conjecture may be violated. This is the first instance of classical SCC violation observed in a spherically symmetric, uncharged black hole. Additionally, we explore the region of SCC violation within the parameter space <span><math><mi>Λ</mi><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>b</mi><mo>/</mo><msub><mrow><mi>b</mi></mrow><mrow><mtext>max</mtext></mrow></msub></math></span>. Our findings indicate that as the cosmological constant increases, the violation region initially expands and then contracts.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0370269324005938/pdfft?md5=b3eaf78f97227f31e303e42123618dca&pid=1-s2.0-S0370269324005938-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy dependence of heavy-ion initial condition in isobar collisions 等边碰撞中重离子初始条件的能量依赖性
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-20 DOI: 10.1016/j.physletb.2024.139034
Collisions of isobar nuclei, those with the same mass number but different structure parameters, provide a new way to probe the initial condition of the heavy ion collisions. Using transport model simulation of 96Ru+96Ru and 96Zr+96Zr collisions at two energies sNN=0.2 TeV and 5.02 TeV, where 96Ru and 96Zr nuclei have significantly different deformations and radial profiles, we identify sources of eccentricities contributing independently to the final state harmonic flow vn. The efficacy for flow generation differs among these sources, and explains the modest energy dependence of the isobar ratios of vn. Additionally, a significant component of vn is found to be uncorrelated with the eccentricity, but is instead generated dynamically during system evoluation. Experimental measurement of these ratios at the LHC energy and comparison with RHIC energy can provide insight into the collision-energy dependence of the initial condition.
质量数相同但结构参数不同的等位原子核对撞为探测重离子对撞的初始条件提供了一种新方法。在两种能量 sNN=0.2 TeV 和 5.02 TeV 下,96Ru+96Ru 和 96Zr+96Zr 对撞中,96Ru 核和 96Zr 核的变形和径向剖面明显不同,利用对这两种对撞的输运模型模拟,我们确定了对终态谐波流 vn 有独立贡献的偏心源。这些偏心源产生谐波流的效率各不相同,这也解释了 vn 的等压比与能量的适度相关性。此外,还发现 vn 的一个重要组成部分与偏心率无关,而是在系统演化过程中动态产生的。在大型强子对撞机能量下对这些比率进行实验测量,并与 RHIC 能量进行比较,可以深入了解初始条件的碰撞能量依赖性。
{"title":"Energy dependence of heavy-ion initial condition in isobar collisions","authors":"","doi":"10.1016/j.physletb.2024.139034","DOIUrl":"10.1016/j.physletb.2024.139034","url":null,"abstract":"<div><div>Collisions of isobar nuclei, those with the same mass number but different structure parameters, provide a new way to probe the initial condition of the heavy ion collisions. Using transport model simulation of <sup>96</sup>Ru+<sup>96</sup>Ru and <sup>96</sup>Zr+<sup>96</sup>Zr collisions at two energies <span><math><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>NN</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>0.2</mn></math></span> TeV and 5.02 TeV, where <sup>96</sup>Ru and <sup>96</sup>Zr nuclei have significantly different deformations and radial profiles, we identify sources of eccentricities contributing independently to the final state harmonic flow <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The efficacy for flow generation differs among these sources, and explains the modest energy dependence of the isobar ratios of <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Additionally, a significant component of <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is found to be uncorrelated with the eccentricity, but is instead generated dynamically during system evoluation. Experimental measurement of these ratios at the LHC energy and comparison with RHIC energy can provide insight into the collision-energy dependence of the initial condition.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0370269324005926/pdfft?md5=f054a4548619ec44dbd2b94a2bd6a613&pid=1-s2.0-S0370269324005926-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutrino mass model and dark matter with Y = 0 inert triplet scalar 中微子质量模型和含有 Y = 0 惰性三重标量的暗物质
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-19 DOI: 10.1016/j.physletb.2024.139030
We study a one-loop induced neutrino mass model with an inert isospin triplet scalar field of Y=0 and heavier isospin doublet vector-like leptons and singlet Majorana right-handed fermions. In addition to the neutrino mass matrix, we explain sizable scale of muon anomalous magnetic dipole moment 109 by introducing a singly-charged boson S±. We show numerical analysis of neutrino oscillation, lepton flavor violations, Z boson decays, and demonstrate our allowed regions in cases of normal and inverted hierarchies. We find the sizable scale of muon anomalous magnetic dipole moment for both cases. Then, we move on to the discussion of dark matter candidates to satisfy the relic density where we have two candidates; fermionic dark matter and bosonic one. And, we classify four cases fermionic dark matter with normal and inverted hierarchies, bosonic one with normal and inverted hierarchies and search for each of the allowed points in the model.
我们研究了一个一回路诱导中微子质量模型,其中有一个 Y=0 的惰性等空三重标量场,以及较重的等空双重矢量类轻子和单重马约拉纳右手费米子。除了中微子质量矩阵之外,我们还通过引入单电荷玻色子 S± 解释了μ介子反常磁偶极矩 10-9 的可观规模。我们展示了对中微子振荡、轻子味道违反、Z 玻色子衰变的数值分析,并证明了我们在正常和倒层次情况下的允许区域。我们发现这两种情况下μ介子反常磁偶极矩的规模都很大。然后,我们继续讨论满足遗迹密度的暗物质候选者,我们有两种候选者:费米子暗物质和玻色子暗物质。我们将费米暗物质分为四种情况:正常层次和反转层次,玻色暗物质分为正常层次和反转层次,并在模型中寻找每一个允许点。
{"title":"Neutrino mass model and dark matter with Y = 0 inert triplet scalar","authors":"","doi":"10.1016/j.physletb.2024.139030","DOIUrl":"10.1016/j.physletb.2024.139030","url":null,"abstract":"<div><div>We study a one-loop induced neutrino mass model with an inert isospin triplet scalar field of <span><math><mi>Y</mi><mo>=</mo><mn>0</mn></math></span> and heavier isospin doublet vector-like leptons and singlet Majorana right-handed fermions. In addition to the neutrino mass matrix, we explain sizable scale of muon anomalous magnetic dipole moment <span><math><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>9</mn></mrow></msup></math></span> by introducing a singly-charged boson <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span>. We show numerical analysis of neutrino oscillation, lepton flavor violations, Z boson decays, and demonstrate our allowed regions in cases of normal and inverted hierarchies. We find the sizable scale of muon anomalous magnetic dipole moment for both cases. Then, we move on to the discussion of dark matter candidates to satisfy the relic density where we have two candidates; fermionic dark matter and bosonic one. And, we classify four cases fermionic dark matter with normal and inverted hierarchies, bosonic one with normal and inverted hierarchies and search for each of the allowed points in the model.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0370269324005884/pdfft?md5=76ab28a8b7b4bcd1ef6315309f36a112&pid=1-s2.0-S0370269324005884-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of J/ψ and ψ(2S) production in p + p and p + d interactions at 120 GeV 在120 GeV的p+p和p+d相互作用中测量J/ψ和ψ(2S)的产生
IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-18 DOI: 10.1016/j.physletb.2024.139032
<div><p>We report the <span><math><mi>p</mi><mo>+</mo><mi>p</mi></math></span> and <span><math><mi>p</mi><mo>+</mo><mi>d</mi></math></span> differential cross sections measured in the SeaQuest experiment for <span><math><mi>J</mi><mo>/</mo><mi>ψ</mi></math></span> and <span><math><mi>ψ</mi><mrow><mo>(</mo><mn>2</mn><mi>S</mi><mo>)</mo></mrow></math></span> production at <figure><img></figure> beam energy covering the forward <em>x</em>-Feynman (<span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span>) range of <span><math><mn>0.5</mn><mo><</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>F</mi></mrow></msub><mo><</mo><mn>0.9</mn></math></span>. The measured cross sections are in good agreement with theoretical calculations based on the nonrelativistic QCD (NRQCD) using the long-distance matrix elements deduced from a recent global analysis of proton- and pion-induced charmonium production data. The <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>ψ</mi><mrow><mo>(</mo><mn>2</mn><mi>S</mi><mo>)</mo></mrow></mrow></msub><mo>/</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>J</mi><mo>/</mo><mi>ψ</mi></mrow></msub></math></span> cross section ratios are found to increase as <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> increases, indicating that the <span><math><mi>q</mi><mover><mrow><mi>q</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> annihilation process has larger contributions in the <span><math><mi>ψ</mi><mrow><mo>(</mo><mn>2</mn><mi>S</mi><mo>)</mo></mrow></math></span> production than the <span><math><mi>J</mi><mo>/</mo><mi>ψ</mi></math></span> production. The <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>p</mi><mi>d</mi></mrow></msub><mo>/</mo><mn>2</mn><msub><mrow><mi>σ</mi></mrow><mrow><mi>p</mi><mi>p</mi></mrow></msub></math></span> cross section ratios are observed to be significantly different for the Drell-Yan process and <span><math><mi>J</mi><mo>/</mo><mi>ψ</mi></math></span> production, reflecting their different production mechanisms. We find that the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>p</mi><mi>d</mi></mrow></msub><mo>/</mo><mn>2</mn><msub><mrow><mi>σ</mi></mrow><mrow><mi>p</mi><mi>p</mi></mrow></msub></math></span> ratios for <span><math><mi>J</mi><mo>/</mo><mi>ψ</mi></math></span> production at the forward <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> region are sensitive to the <span><math><mover><mrow><mi>d</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>/</mo><mover><mrow><mi>u</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> flavor asymmetry of the proton sea, analogous to the Drell-Yan process. The transverse momentum (<span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>) distributions for <span><math><mi>J</mi><mo>/</mo><mi>ψ</mi></math></span> and <span><math><mi>ψ</mi><mrow><mo>(</mo><mn>2</mn><mi>S</mi><mo>)</mo></mrow></math></span> production are
我们报告了在SeaQuest实验中测量到的J/ψ和ψ(2S)产生的p+p和p+d差分截面,其束流能量覆盖了0.5<xF<0.9的前向x-费曼(xF)范围。测得的截面与基于非相对论QCD(NRQCD)的理论计算结果非常吻合,计算中使用了最近对质子和先驱诱导的粲产生数据进行的全局分析所推导出的长距离矩阵元素。发现σψ(2S)/σJ/ψ截面比随着xF的增大而增大,这表明qq'湮灭过程在ψ(2S)产生中的贡献大于J/ψ产生。德雷尔-杨过程和 J/ψ 产生的σpd/2σpp 截面比显著不同,反映了它们不同的产生机制。我们发现,与德雷尔-杨过程类似,J/ψ在前xF区产生的σpd/2σpp比对质子海的d¯/u¯味道不对称性很敏感。我们还展示了J/ψ和ψ(2S)产生的横动量(pT)分布,并与在更高的质心能量下收集的数据进行了比较。
{"title":"Measurement of J/ψ and ψ(2S) production in p + p and p + d interactions at 120 GeV","authors":"","doi":"10.1016/j.physletb.2024.139032","DOIUrl":"10.1016/j.physletb.2024.139032","url":null,"abstract":"&lt;div&gt;&lt;p&gt;We report the &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; differential cross sections measured in the SeaQuest experiment for &lt;span&gt;&lt;math&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; production at &lt;figure&gt;&lt;img&gt;&lt;/figure&gt; beam energy covering the forward &lt;em&gt;x&lt;/em&gt;-Feynman (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) range of &lt;span&gt;&lt;math&gt;&lt;mn&gt;0.5&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;0.9&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. The measured cross sections are in good agreement with theoretical calculations based on the nonrelativistic QCD (NRQCD) using the long-distance matrix elements deduced from a recent global analysis of proton- and pion-induced charmonium production data. The &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; cross section ratios are found to increase as &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; increases, indicating that the &lt;span&gt;&lt;math&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; annihilation process has larger contributions in the &lt;span&gt;&lt;math&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; production than the &lt;span&gt;&lt;math&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; production. The &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; cross section ratios are observed to be significantly different for the Drell-Yan process and &lt;span&gt;&lt;math&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; production, reflecting their different production mechanisms. We find that the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; ratios for &lt;span&gt;&lt;math&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; production at the forward &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; region are sensitive to the &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; flavor asymmetry of the proton sea, analogous to the Drell-Yan process. The transverse momentum (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) distributions for &lt;span&gt;&lt;math&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; production are","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0370269324005902/pdfft?md5=256ccf665a79c52019f29fb66fd83fc5&pid=1-s2.0-S0370269324005902-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physics Letters B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1