Metal–Organic Framework and Biopolymer-Based Composite Hydrogel for Enhanced Encapsulation of Anticancer Drugs: A New Age Transdermal Drug Delivery Vehicle
Hiral Ukani, Nildhara Parsana, Sanjay Mehra, Arvind Kumar, Imran Khan, Mohammed A. Assiri and Naved Malek*,
{"title":"Metal–Organic Framework and Biopolymer-Based Composite Hydrogel for Enhanced Encapsulation of Anticancer Drugs: A New Age Transdermal Drug Delivery Vehicle","authors":"Hiral Ukani, Nildhara Parsana, Sanjay Mehra, Arvind Kumar, Imran Khan, Mohammed A. Assiri and Naved Malek*, ","doi":"10.1021/acsaenm.4c0050810.1021/acsaenm.4c00508","DOIUrl":null,"url":null,"abstract":"<p >The transdermal drug delivery system (TDDS) is a promising and innovative approach to drug delivery because of its noninvasiveness, potential for localized and prolonged drug delivery, and ability to minimize systemic side effects by avoiding first-pass metabolism. Utilizing the distinctive characteristics of hydrogels, such as their biocompatibility, versatility in administration, and higher drug loading capabilities, herein, we develop a biocompatible hydrogel through synergistically interacting the biopolymer k-carrageenan (k-CG) and metal–organic framework (MOF) (zeolitic imidazolate framework (ZIF-8)) that can work as a TDDS. The resultant hydrogel showcased remarkable properties necessary for being the TDDS, including superior mechanical strength, self-healing capabilities, adhesiveness, and spreadability. Notably, this hydrogel exhibits a substantial drug loading capacity, specifically 64.16 mg/g of the anticancer drug 5-fluorouracil (5-FU), with sustained release behavior of 71.8% within 72 h. The hydrogel demonstrated remarkable viability (∼95%) in MTT assays against HaCaT cells, indicating its excellent biocompatibility. The drug-loaded hydrogel effectively targeted TDDS, evidenced by <i>in vitro</i> cytotoxicity studies on MCF-7 breast cancer cells. Additionally, the hydrogel exhibited efficient curcumin (Cur) loading at 18 mg/g without affecting its stability, showcasing notable antibacterial and antioxidant properties. These findings suggest the potential of the investigated system for cancer therapy and wound healing applications.</p>","PeriodicalId":55639,"journal":{"name":"ACS Applied Engineering Materials","volume":"2 11","pages":"2583–2596 2583–2596"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaenm.4c00508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The transdermal drug delivery system (TDDS) is a promising and innovative approach to drug delivery because of its noninvasiveness, potential for localized and prolonged drug delivery, and ability to minimize systemic side effects by avoiding first-pass metabolism. Utilizing the distinctive characteristics of hydrogels, such as their biocompatibility, versatility in administration, and higher drug loading capabilities, herein, we develop a biocompatible hydrogel through synergistically interacting the biopolymer k-carrageenan (k-CG) and metal–organic framework (MOF) (zeolitic imidazolate framework (ZIF-8)) that can work as a TDDS. The resultant hydrogel showcased remarkable properties necessary for being the TDDS, including superior mechanical strength, self-healing capabilities, adhesiveness, and spreadability. Notably, this hydrogel exhibits a substantial drug loading capacity, specifically 64.16 mg/g of the anticancer drug 5-fluorouracil (5-FU), with sustained release behavior of 71.8% within 72 h. The hydrogel demonstrated remarkable viability (∼95%) in MTT assays against HaCaT cells, indicating its excellent biocompatibility. The drug-loaded hydrogel effectively targeted TDDS, evidenced by in vitro cytotoxicity studies on MCF-7 breast cancer cells. Additionally, the hydrogel exhibited efficient curcumin (Cur) loading at 18 mg/g without affecting its stability, showcasing notable antibacterial and antioxidant properties. These findings suggest the potential of the investigated system for cancer therapy and wound healing applications.
期刊介绍:
ACS Applied Engineering Materials is an international and interdisciplinary forum devoted to original research covering all aspects of engineered materials complementing the ACS Applied Materials portfolio. Papers that describe theory simulation modeling or machine learning assisted design of materials and that provide new insights into engineering applications are welcomed. The journal also considers experimental research that includes novel methods of preparing characterizing and evaluating new materials designed for timely applications. With its focus on innovative applications ACS Applied Engineering Materials also complements and expands the scope of existing ACS publications that focus on materials science discovery including Biomacromolecules Chemistry of Materials Crystal Growth & Design Industrial & Engineering Chemistry Research Inorganic Chemistry Langmuir and Macromolecules.The scope of ACS Applied Engineering Materials includes high quality research of an applied nature that integrates knowledge in materials science engineering physics mechanics and chemistry.