A Fast 3-D Approach for Electroporation Treatment Planning: Optimal Electrodes Configuration

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-06-13 DOI:10.1109/JERM.2024.3409678
A. Paffi;F. Apollonio;M. Cadossi;V. D'Alessio;R. Fusco;A. Giannini;M. Liberti
{"title":"A Fast 3-D Approach for Electroporation Treatment Planning: Optimal Electrodes Configuration","authors":"A. Paffi;F. Apollonio;M. Cadossi;V. D'Alessio;R. Fusco;A. Giannini;M. Liberti","doi":"10.1109/JERM.2024.3409678","DOIUrl":null,"url":null,"abstract":"Purpose of this work is to develop a tool for electrochemotherapy treatment planning, which automatically estimates the optimal electrode configuration on the basis of the calculation of the induced electric field in a 3D tissue volume, including the tumor lesion, obtained from patient's MRI. The tool conciliates accuracy in the estimate of the tumor coverage with speed of calculation. The optimal electrodes configuration, that guarantees the tumor electroporation with the minimum number of electrodes, is obtained by adapting algorithms for the creation of unstructured simplex meshes. To go fast, the elementary electric field distributions are pre-calculated and stored in a database and the optimization procedure is split in two consequential steps: transversal and longitudinal optimizations. The whole code is implemented in C++ environment. The tool, tested in a set of real cases, showed the complete electroporation of the lesions, while preserving noble structures from the electrodes crossing. Calculation times were compatible with real-time requirements. The proposed tool represents a valid support for the electroporation treatment planning. With respect to the literature, it automatically estimates the best electrode configuration in a realistic 3D domain, while maintaining reduced calculation times. This is crucial for improving effectiveness and reliability of electroporation-based treatments.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"393-400"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10557476","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10557476/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of this work is to develop a tool for electrochemotherapy treatment planning, which automatically estimates the optimal electrode configuration on the basis of the calculation of the induced electric field in a 3D tissue volume, including the tumor lesion, obtained from patient's MRI. The tool conciliates accuracy in the estimate of the tumor coverage with speed of calculation. The optimal electrodes configuration, that guarantees the tumor electroporation with the minimum number of electrodes, is obtained by adapting algorithms for the creation of unstructured simplex meshes. To go fast, the elementary electric field distributions are pre-calculated and stored in a database and the optimization procedure is split in two consequential steps: transversal and longitudinal optimizations. The whole code is implemented in C++ environment. The tool, tested in a set of real cases, showed the complete electroporation of the lesions, while preserving noble structures from the electrodes crossing. Calculation times were compatible with real-time requirements. The proposed tool represents a valid support for the electroporation treatment planning. With respect to the literature, it automatically estimates the best electrode configuration in a realistic 3D domain, while maintaining reduced calculation times. This is crucial for improving effectiveness and reliability of electroporation-based treatments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电穿孔治疗规划的快速三维方法:最佳电极配置
这项工作的目的是开发一种用于电化学疗法治疗规划的工具,该工具可根据从患者核磁共振成像中获得的包括肿瘤病灶在内的三维组织体积中感应电场的计算结果,自动估算最佳电极配置。该工具兼具估计肿瘤覆盖范围的准确性和计算速度。通过调整创建非结构化单纯网格的算法,可获得最佳电极配置,确保以最少的电极数量电穿孔肿瘤。为了加快速度,基本电场分布已预先计算并存储在数据库中,优化过程分为两个相应步骤:横向优化和纵向优化。整个代码在 C++ 环境中实现。该工具在一组真实病例中进行了测试,结果表明能对病变部位进行完全电穿孔,同时保留了电极交叉处的惰性结构。计算时间符合实时要求。所提出的工具为电穿孔治疗规划提供了有效支持。与文献相比,它能在现实三维域中自动估算最佳电极配置,同时缩短计算时间。这对于提高电穿孔治疗的有效性和可靠性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
期刊最新文献
2024 Index IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Vol. 8 Front Cover Table of Contents IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1