{"title":"The initial corrosion mechanism of hot-dipping Zn–Al–Mg alloy coating in chloride-containing solution","authors":"Shasha Zhang, Xin He, Ting Shang, Guangrui Jiang, Wuhua Liu, Huaxiang Teng, Tianqi Chen, Xuequn Cheng, Chao Liu","doi":"10.1007/s10853-024-10410-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the initial corrosion behavior of surface and cut-edge structures of hot-dip Zn-1.5Al-1.1 Mg alloy coatings in a 3.5wt.% NaCl solution was investigated. Micro-electrochemical experiments were conducted to explore the influence mechanism of coating structure on corrosion initiation. The results indicate that different microstructures significantly affect the corrosion resistance of the coating due to their potential differences, highlighting varied roles in this process. Preferential corrosion of the ternary eutectic phase occurs, leading to the gradual formation of corrosion products that cover the coating surface. This protective layer hinders further erosion by corrosive media, thereby improving the coating’s corrosion resistance. Furthermore, the galvanic difference between each phase of the coating is concealed by the coating and the substrate, and the corrosion products can accumulate on the substrate, illustrating the dual protection of the coating on the steel substrate at the cut-edge: cathodic protection due to its negative potential and long-term protection of the corrosion product film.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 44","pages":"20780 - 20795"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10410-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the initial corrosion behavior of surface and cut-edge structures of hot-dip Zn-1.5Al-1.1 Mg alloy coatings in a 3.5wt.% NaCl solution was investigated. Micro-electrochemical experiments were conducted to explore the influence mechanism of coating structure on corrosion initiation. The results indicate that different microstructures significantly affect the corrosion resistance of the coating due to their potential differences, highlighting varied roles in this process. Preferential corrosion of the ternary eutectic phase occurs, leading to the gradual formation of corrosion products that cover the coating surface. This protective layer hinders further erosion by corrosive media, thereby improving the coating’s corrosion resistance. Furthermore, the galvanic difference between each phase of the coating is concealed by the coating and the substrate, and the corrosion products can accumulate on the substrate, illustrating the dual protection of the coating on the steel substrate at the cut-edge: cathodic protection due to its negative potential and long-term protection of the corrosion product film.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.