Md. Faysal Nayan, Md. Arif Raihan, Mahamudul Hassan Fuad, Numayer Andalib Zaman, Tanvir Ahmed, Russel Reza Mahmud
{"title":"A high-performance biosensor based on one-dimensional photonic crystal for the detection of cancer cells","authors":"Md. Faysal Nayan, Md. Arif Raihan, Mahamudul Hassan Fuad, Numayer Andalib Zaman, Tanvir Ahmed, Russel Reza Mahmud","doi":"10.1007/s11082-024-07677-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a novel, highly sensitive, and compact one-dimensional (1D) binary photonic crystal biosensor designed for real-time detection of malignant cells, including breast, cervical, and basal cancer cells. It utilizes a GaAs/MgF<sub>2</sub> multilayer photonic crystal with a central defect layer, which creates a resonant peak within the photonic band gap. Introducing different cancerous cell samples into the defect layer causes a shift in the resonant mode position, which correlates with the refractive index changes of the samples. Using the transfer matrix method (TMM), we analyzed the spectral properties of the structure. We investigated the effects of incident angle, defect thickness, and the number of periods on the transmittance of TE waves. Additionally, this article investigated the performance comparison between TE and TM modes. To achieve the highest sensitivity in our design, we have discussed the procedure for optimizing the biosensor parameters. At these optimized conditions, the biosensor achieves a sensitivity of 2564.83 nm/RIU, a quality factor of 2979.317, and a figure of merit (FOM) of 3612.175 RIU<sup>−1</sup>. To highlight the novelty of our work, we have compared our results with previous research in photonic biosensing, demonstrating significant improvements in sensitivity and performance.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07677-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we present a novel, highly sensitive, and compact one-dimensional (1D) binary photonic crystal biosensor designed for real-time detection of malignant cells, including breast, cervical, and basal cancer cells. It utilizes a GaAs/MgF2 multilayer photonic crystal with a central defect layer, which creates a resonant peak within the photonic band gap. Introducing different cancerous cell samples into the defect layer causes a shift in the resonant mode position, which correlates with the refractive index changes of the samples. Using the transfer matrix method (TMM), we analyzed the spectral properties of the structure. We investigated the effects of incident angle, defect thickness, and the number of periods on the transmittance of TE waves. Additionally, this article investigated the performance comparison between TE and TM modes. To achieve the highest sensitivity in our design, we have discussed the procedure for optimizing the biosensor parameters. At these optimized conditions, the biosensor achieves a sensitivity of 2564.83 nm/RIU, a quality factor of 2979.317, and a figure of merit (FOM) of 3612.175 RIU−1. To highlight the novelty of our work, we have compared our results with previous research in photonic biosensing, demonstrating significant improvements in sensitivity and performance.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.