Influence of hydrothermal carbonized sewage sludge on coal water slurry performance

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Frontiers of Chemical Science and Engineering Pub Date : 2024-09-27 DOI:10.1007/s11705-024-2508-z
Asma Leghari, Yao Xiao, Lu Ding, Hammad Sadiq, Abdul Raheem, Guangsuo Yu
{"title":"Influence of hydrothermal carbonized sewage sludge on coal water slurry performance","authors":"Asma Leghari,&nbsp;Yao Xiao,&nbsp;Lu Ding,&nbsp;Hammad Sadiq,&nbsp;Abdul Raheem,&nbsp;Guangsuo Yu","doi":"10.1007/s11705-024-2508-z","DOIUrl":null,"url":null,"abstract":"<div><p>Coal utilization, as a major energy source, raises sustainability concerns and environmental impacts, prompting researchers to explore blending it with other feedstocks. This study discusses hydrochar coal-water slurry (HC-CWS) preparation conditions, emphasizing apparent viscosity and exploring the influence of high ash content on char reactivity. The study highlights that the presence of free water in sludge is moderately influential, while high amounts of free water in raw sewage sludge (SS) and its near absence during hydrothermal carbonization (HTC) of SS are both unfavorable for enhancing the overall performance of coal-water slurry (CWS). HTC reduces the concentration of hydroxyl functional group, enhancing slurry performance and reducing ash content in HC-CWS, indicating that coal complements hydrochar (HC). High-temperature HC preparation is unsuitable for HC-CWS due to increased viscosity and decreased stability. In terms of ash content, the optimal pH and HC ratio for CWS are determined at 30% HC. The gasification reactivity of HC, prepared at 180 °C with a 30% HC ratio in CWS at <i>R</i><sub>0.5</sub> is 6 × 10<sup>−3</sup> and at <i>R</i><sub>0.9</sub> is 9 × 10<sup>−3</sup>. However, increasing HC to 50% diminishes reactivity under CO<sub>2</sub> atmosphere. The inhibitory effect was observed with an increasing percentage of HC in CWS and the synergy factor decreased in the following order: 10% HC &gt; 30% HC &gt; 50% HC, i.e., from 1.04 to 0.35. The possible reason is the presence of high ash content and their similar initial gasification rates during its early stages.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2508-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coal utilization, as a major energy source, raises sustainability concerns and environmental impacts, prompting researchers to explore blending it with other feedstocks. This study discusses hydrochar coal-water slurry (HC-CWS) preparation conditions, emphasizing apparent viscosity and exploring the influence of high ash content on char reactivity. The study highlights that the presence of free water in sludge is moderately influential, while high amounts of free water in raw sewage sludge (SS) and its near absence during hydrothermal carbonization (HTC) of SS are both unfavorable for enhancing the overall performance of coal-water slurry (CWS). HTC reduces the concentration of hydroxyl functional group, enhancing slurry performance and reducing ash content in HC-CWS, indicating that coal complements hydrochar (HC). High-temperature HC preparation is unsuitable for HC-CWS due to increased viscosity and decreased stability. In terms of ash content, the optimal pH and HC ratio for CWS are determined at 30% HC. The gasification reactivity of HC, prepared at 180 °C with a 30% HC ratio in CWS at R0.5 is 6 × 10−3 and at R0.9 is 9 × 10−3. However, increasing HC to 50% diminishes reactivity under CO2 atmosphere. The inhibitory effect was observed with an increasing percentage of HC in CWS and the synergy factor decreased in the following order: 10% HC > 30% HC > 50% HC, i.e., from 1.04 to 0.35. The possible reason is the presence of high ash content and their similar initial gasification rates during its early stages.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水热碳化污水污泥对水煤浆性能的影响
煤炭作为一种主要能源,其利用引起了可持续发展的关注和对环境的影响,促使研究人员探索将其与其他原料混合。本研究讨论了水煤浆(HC-CWS)的制备条件,强调了表观粘度,并探讨了高灰分对炭反应性的影响。研究强调,污泥中游离水的存在影响不大,而原污水污泥(SS)中的大量游离水和 SS 水热碳化(HTC)过程中几乎不存在的游离水均不利于提高水煤浆(CWS)的整体性能。水热碳化降低了羟基官能团的浓度,从而提高了水煤浆的性能,并降低了水煤浆中的灰分含量,这表明煤与水炭(HC)是相辅相成的。由于粘度增加和稳定性降低,高温碳氢化合物制备不适合 HC-CWS。就灰分含量而言,CWS 的最佳 pH 值和碳氢化合物比率确定为 30%。在 180 °C 下以 30% 的碳氢化合物比例制备的碳氢化合物在 CWS 中的气化反应活性在 R0.5 时为 6 × 10-3,在 R0.9 时为 9 × 10-3。然而,将碳氢化合物的比例提高到 50%,会降低在二氧化碳气氛下的反应活性。随着碳氢化合物在 CWS 中的比例增加,抑制作用也随之增加,协同系数依次降低:10% HC > 30% HC > 50% HC,即从 1.04 降至 0.35。可能的原因是灰分含量高,而且在早期阶段它们的初始气化率相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
期刊最新文献
Influence of hydrothermal carbonized sewage sludge on coal water slurry performance Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects Effective lateral dispersion of momentum, heat and mass in bubbling fluidized beds Excellent charge separation over NiCo2S4/CoTiO3 nanocomposites improved photocatalytic hydrogen production Recent progress in the interfacial polymerization process for CO2 separation membrane fabrication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1